Устранение участников механизма аллергии ― устранение механизмов гомеостаза? Новые подходы к лечению аллергии
- Авторы: Гущин И.С.1, Хаитов Р.М.1
-
Учреждения:
- Государственный научный центр «Институт иммунологии» Федерального медико-биологического агентства
- Выпуск: Том 19, № 1 (2022)
- Страницы: 11-42
- Раздел: Научные обзоры
- URL: https://journals.rcsi.science/raj/article/view/121623
- DOI: https://doi.org/10.36691/RJA1514
- ID: 121623
Цитировать
Полный текст
Аннотация
Участие аллергической реакции и её главных составляющих элементов (IgE, тучные клетки/базофилы, эозинофилы) в поддержании разных видов гомеостатической функции в настоящее время становится всё более очевидным, что проиллюстрировано на примере таких эволюционных приобретений, как противопаразитарный и противоопухолевый способы устойчивости организма высокоорганизованных видов животных. В сохранение механизмов этих форм гомеостаза вовлекаются все три участника аллергической реакции, откуда следует всё более часто высказываемое опасение, что длительное поддержание блокады активности этих участников и тем более их устранение может сопровождаться нежелательными последствиями в виде подавления специфических механизмов гомеостаза. Это следует учитывать при внедрении в клиническую практику новых групп противоаллергических средств, ориентированных на длительное, а то и пожизненное применение.
Обращение к разработке и использованию противоаллергических средств, устраняющих участников аллергического ответа, приобретённых в ходе эволюции и выполняющих гомеостатические функции, происходит, скорее, от безысходности положения при лечении пациентов с тяжёлым течением заболевания, устойчивым к другим методам противоаллергической терапии. Понимание и принятие такого представления в научном сообществе может послужить толчком к совершенствованию существующих и созданию принципиально новых и стратегически оправданных методов предотвращения не самой возможности, а необходимости развития аллергического ответа. На сегодняшний день такими методами являются восстановление полноценности барьерных систем; аллергенспецифическая иммунотерапия; использование естественных способов ограничения, остановки и обратного развития (разрешения) аллергической реакции.
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
Игорь Сергеевич Гущин
Государственный научный центр «Институт иммунологии» Федерального медико-биологического агентства
Автор, ответственный за переписку.
Email: igushchin@yandex.ru
ORCID iD: 0000-0002-4465-6509
SPIN-код: 1905-4758
д.м.н., профессор, член-корр. РАН
Россия, МоскваРахим Мусаевич Хаитов
Государственный научный центр «Институт иммунологии» Федерального медико-биологического агентства
Email: rkhaitov@mail.ru
ORCID iD: 0000-0002-2397-5172
SPIN-код: 4004-6561
д.м.н., профессор, академик РАН
Россия, МоскваСписок литературы
- Адо А.Д. Общая аллергология (руководство для врачей). 2-е изд., перераб. и доп. Москва: Медицина, 1978. 464 с.
- Хаитов Р.М. Иммунология: учебник. 4-е изд., перераб. и доп. Москва: ГЭОТАР-Медиа, 2021. 520 с. doi: 10.33029/9704-6398-7-IMM-2021-1-520
- Гущин И.С. Об элементах биологической целесообразности аллергической реактивности // Патологическая физиология и экспериментальная терапия. 1979. № 4. С. 3–11.
- Гущин И.С. Эволюционное предупреждение: аллергия // Патологическая физиология и экспериментальная терапитя. 2014. Т. 58, № 1. С. 57–67.
- Гущин И.С. Аллергия ― поздний продукт эволюции иммунной системы // Иммунология. 2019. Т. 40, № 2. С. 43–57. doi: 10.24411/0206-4952-2019-12007
- Гущин И.С., Курбачева О.М. Аллергия и аллергенспецифическая иммунотерапия. Москва: Фармарус Принт Меди, 2010. 228 с.
- Гущин И.С. Алергенная проницаемость барьерных тканей ― стратегическая проблема аллергологии // Пульмонология. 2006. № 3. С. 5–13.
- Гущин И.С. Рецепторы специализированных проразрешающих медиаторов ― вероятная мишень фармакологического восстановления гомеостаза при аллергическом воспалении // Иммунология. 2021. Т. 42, № 3. С. 277–292. doi: 10.33029/0206-4952-2021-42-3-277-292
- Tan H.T., Sugita K., Akdis C.A. Novel biologicals for the treatment of allergic diseases and asthma // Curr Allergy Asthma Rep. 2016. Vol. 16, N 10. P. 70. doi: 10.1007/s11882-016-0650-5
- Karra L., Berent-Maoz B., Ben-Zimra M., Levi-Schaffer F. Are we ready to downregulate mast cells? // Curr Opin Immunol. 2009. Vol. 21, N 6. P. 708–714. doi: 10.1016/j.coi.2009.09.010
- Siebenhaar F., Redegeld F.A., Bischoff S.C., et al. Mast cells as drivers of disease and therapeutic targets // Trends Immunol. 2018. Vol. 39, N 2. P. 151–162. doi: 10.1016/j.it.2017.10.005
- Schanin J., Gebremeskel S., Korver W., et al. A monoclonal antibody to Siglec-8 suppresses non-allergic airway inflammation and inhibits IgE-independent mast cell activation // Mucosal Immunol. 2021. Vol. 14, N 2. P. 366–376. doi: 10.1038/s41385-020-00336-9
- Kay A.B., Bousquet J., Holt P.G., Kaplan A.P., ed. Allergy and Allergic Diseases, 2 Volume Set. 2nd ed. New York: Wiley-Blackwell; 2008. 2184 р.
- Akdis C.A., Agache I. EAACI Global Atlas of Allergy. Zurich: European Academy of Allergy and Clinical Immunology; 2014.
- Galli S.J. The mast Cell-IgE paradox: from homeostasis to anaphylaxis // Am J Pathol. 2016. Vol. 186, N 2. P. 212–224. doi: 10.1016/j.ajpath.2015.07.025
- Burton O.T., Oettgen H.C. Beyond immediate hypersensitivity: evolving roles for IgE antibodies in immune homeostasis and allergic diseases // Immunol Rev. 2011. Vol. 242, N 1. P. 128–143. doi: 10.1111/j.1600-065X.2011.01024.x
- Dudeck A., Köberle M., Goldmann O., et al. Mast cells as protectors of health // J Allergy Clin Immunol. 2019. Vol. 144, N 4S. P. S4–S18. doi: 10.1016/j.jaci.2018.10.054
- Mukai K., Tsai M., Starkl P., et al. IgE and mast cells in host defense against parasites and venoms // Semin Immunopathol. 2016. Vol. 38, N 5. P. 581–603. doi: 10.1007/s00281-016-0565-1
- Yoshikawa S., Miyake K., Kamiya A., Karasuyama H. The role of basophils in acquired protective immunity to tick infestation // Parasite Immunol. 2021. Vol. 43, N 5. P. e12804. doi: 10.1111/pim.12804
- Marshall J.S., Portales-Cervantes L., Leong E. Mast cell responses to viruses and pathogen products // Int J Mol Sci. 2019. Vol. 20, N 17. P. 4241. doi: 10.3390/ijms20174241
- Lu F., Huang S. The roles of mast cells in parasitic protozoan infections // Front Immunol. 2017. Vol. 8. Р. 363. doi: 10.3389/fimmu.2017.00363
- Conti P., Caraffa A., Ronconi G., et al. Recent progress on pathophysiology, inflammation and defense mechanism of mast cells against invading microbes: inhibitory effect of IL-37 // Cent Eur J Immunol. 2019. Vol. 44, N 4. P. 447–454. doi: 10.5114/ceji.2019.92807
- Simon H.U., Yousefi S., Germic N., et al. The cellular functions of eosinophils: collegium internationale allergologicum (CIA) update 2020 // Int Arch Allergy Immunol. 2020. Vol. 181, N 1. P. 11–23. doi: 10.1159/000504847
- Klion A.D., Ackerman S.J., Bochner B.S. Contributions of eosinophils to human health and disease // Annu Rev Pathol. 2020. Vol. 15. P. 179–209. doi: 10.1146/annurev-pathmechdis-012419-032756
- Palm N.W., Rosenstein R.K., Medzhitov R. Allergic host defences // Nature. 2012. Vol. 484, N 7395. P. 465–472. doi: 10.1038/nature11047
- Varricchi G., Rossi F.W., Galdiero M.R., et al. Physiological roles of mast cells: collegium internationale allergologicum update 2019 // Int Arch Allergy Immunol. 2019. Vol. 179, N 4. P. 247–261. doi: 10.1159/000500088
- Chauhan J., McCraw A.J., Nakamura M., et al. IgE Antibodies against Cancer: Efficacy and Safety // Antibodies (Basel). 2020. Vol. 9, N 4. P. 55. doi: 10.3390/antib9040055
- Pritchard D.I., Falcone F.H., Mitchell P.D. The evolution of IgE-mediated type I hypersensitivity and its immunological value // Allergy. 2021. Vol. 76, N 4. P. 1024–1040. doi: 10.1111/all.14570
- Duarte J., Deshpande P., Guiyedi V., et al. Total and functional parasite specific IgE responses in Plasmodium falciparum-infected patients exhibiting different clinical status // Malar J. 2007. Vol. 6. Р. 1. doi: 10.1186/1475-2875-6-1
- Mossalayi M.D., Arock M., Mazier D., et al. The human immune response during cutaneous leishmaniasis: NO problem // Parasitol Today. 1999. Vol. 15, N 8. P. 342–345. doi: 10.1016/s0169-4758(99)01477-5
- Wright J.E., Werkman M., Dunn J.C., Anderson R.M. Current epidemiological evidence for predisposition to high or low intensity human helminth infection: a systematic review // Parasit Vectors. 2018. Vol. 11, N 1. P. 65. doi: 10.1186/s13071-018-2656-4
- Al Amin A.S., Wadhwa R. Helminthiasis. 2021 Jul 21. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021.
- Capron A., Dessaint J.P., Haque A., Capron M. Antibody-dependent cell-mediated cytotoxicity against parasites // Prog Allergy. 1982. Vol. 31. P. 234–267.
- Finkelman F.D., Shea-Donohue T., Morris S.C., et al. Interleukin-4- and interleukin-13-mediated host protection against intestinal nematode parasites // Immunol Rev. 2004. Vol. 201. Р. 139–155. doi: 10.1111/j.0105-2896.2004.00192.x
- Capron A., Dessaint J.P. Effector and regulatory mechanisms in immunity to schistosomes: a heuristic view // Annu Rev Immunol. 1985. Vol. 3. P. 455–476. doi: 10.1146/annurev.iy.03.040185.002323
- Vignali D.A., Bickle Q.D., Taylor M.G. Immunity to Schistosoma mansoni in vivo: contradiction or clarification? // Immunol Today. 1989. Vol. 10, N 12. P. 410–416. doi: 10.1016/0167-5699(89)90038-8
- Capron M., Spiegelberg H.L., Prin L., et al. Role of IgE receptors in effector function of human eosinophils // J Immunol. 1984. Vol. 132, N 1. P. 462–468.
- Auriault C., Damonneville M., Verwaerde C., et al. Rat IgE directed against schistosomula-released products is cytotoxic for Schistosoma mansoni schistosomula in vitro // Eur J Immunol. 1984. Vol. 14, N 2. P. 132–138. doi: 10.1002/eji.1830140206
- Hagan P., Blumenthal U.J., Dunn D., et al. Human IgE, IgG4 and resistance to reinfection with Schistosoma haematobium // Nature. 1991. Vol. 349, N 6306. P. 243–245. doi: 10.1038/349243a0
- Rihet P., Demeure C.E., Bourgois A., et al. Evidence for an association between human resistance to Schistosoma mansoni and high anti-larval IgE levels // Eur J Immunol. 1991. Vol. 21, N 11. P. 2679–2686. doi: 10.1002/eji.1830211106
- Dunne D.W., Butterworth A.E., Fulford A.J., et al. Immunity after treatment of human schistosomiasis: association between IgE antibodies to adult worm antigens and resistance to reinfection // Eur J Immunol. 1992. Vol. 22, N 6. P. 1483–1494. doi: 10.1002/eji.1830220622
- Spencer L.A., Porte P., Zetoff C., Rajan T.V. Mice genetically deficient in immunoglobulin E are more permissive hosts than wild-type mice to a primary, but not secondary, infection with the filarial nematode Brugia malayi // Infect Immun. 2003. Vol. 71, N 5. P. 2462–2467. doi: 10.1128/IAI.71.5.2462-2467.2003
- Gurish M.F., Bryce P.J., Tao H., et al. IgE enhances parasite clearance and regulates mast cell responses in mice infected with Trichinella spiralis // J Immunol. 2004. Vol. 172, N 2. P. 1139–1145. doi: 10.4049/jimmunol.172.2.1139
- Schwartz C., Turqueti-Neves A., Hartmann S., et al. Basophil-mediated protection against gastrointestinal helminths requires IgE-induced cytokine secretion // Proc Natl Acad Sci U S A. 2014. Vol. 111, N 48. P. E5169–5177. doi: 10.1073/pnas.1412663111
- Cruz A.A., Lima F., Sarinho E., et al. Safety of anti- immunoglobulin E therapy with omalizumab in allergic patients at risk of geohelminth infection // Clin Exp Allergy. 2007. Vol. 37, N 2. P. 197–207. doi: 10.1111/j.1365-2222.2007.02650.x
- Pelaia C., Calabrese C., Terracciano R., et al. Omalizumab, the first available antibody for biological treatment of severe asthma: more than a decade of real-life effectiveness // Ther Adv Respir Dis. 2018. Vol. 12. P. 1753466618810192. doi: 10.1177/1753466618810192
- Matsumoto M., Sasaki Y., Yasuda K., et al. IgG and IgE collaboratively accelerate expulsion of Strongyloides venezuelensis in a primary infection // Infect Immun. 2013. Vol. 81, N 7. P. 2518–2527. doi: 10.1128/IAI.00285-13
- Watanabe N., Katakura K., Kobayashi A., et al. Protective immunity and eosinophilia in IgE-deficient SJA/9 mice infected with Nippostrongylus brasiliensis and Trichinella spiralis // Proc Natl Acad Sci U S A. 1988. Vol. 85, N 12. P. 4460–4462. doi: 10.1073/pnas.85.12.4460
- Watanabe N. Impaired protection against Trichinella spiralis in mice with high levels of IgE // Parasitol Int. 2014. Vol. 63, N 2. P. 332–336. doi: 10.1016/j.parint.2013.12.004
- Pritchard D.I. Immunity to helminths: is too much IgE parasite--rather than host-protective? // Parasite Immunol. 1993. Vol. 15, N 1. P. 5–9. doi: 10.1111/j.1365-3024.1993.tb00566.x
- Pritchard D.I., Hewitt C., Moqbel R. The relationship between immunological responsiveness controlled by T-helper 2 lymphocytes and infections with parasitic helminths // Parasitology. 1997. Vol. 115, Suppl. C. S33–44. doi: 10.1017/s0031182097001996
- Amiri P., Haak-Frendscho M., Robbins K., et al. Anti-immunoglobulin E treatment decreases worm burden and egg production in Schistosoma mansoni-infected normal and interferon gamma knockout mice // J Exp Med. 1994. Vol. 180, N 1. P. 43–51. doi: 10.1084/jem.180.1.43
- King C.L., Xianli J., Malhotra I., et al. Mice with a targeted deletion of the IgE gene have increased worm burdens and reduced granulomatous inflammation following primary infection with Schistosoma mansoni // J Immunol. 1997. Vol. 158, N 1. P. 294–300.
- Jankovic D., Kullberg M.C., Dombrowicz D., et al. Fc epsilonRI-deficient mice infected with Schistosoma mansoni mount normal Th2-type responses while displaying enhanced liver pathology // J Immunol. 1997. Vol. 159, N 4. P. 1868–1875.
- Martin R.K., Damle S.R., Valentine Y.A., et al. B1 Cell IgE impedes mast cell-mediated enhancement of parasite expulsion through B2 IgE blockade // Cell Rep. 2018. Vol. 22, N 7. P. 1824–1834. doi: 10.1016/j.celrep.2018.01.048
- Griffin D.O., Holodick N.E., Rothstein T.L. Human B1 cells in umbilical cord and adult peripheral blood express the novel phenotype CD20+ CD27+ CD43+ CD70- // J Exp Med. 2011. Vol. 208, N 1. P. 67–80. doi: 10.1084/jem.20101499
- Pennock J.L., Grencis R.K. The mast cell and gut nematodes: damage and defence // Chem Immunol Allergy. 2006. Vol. 90. P. 128–140. doi: 10.1159/000088885.
- Abe T., Sugaya H., Ishida K., et al. Intestinal protection against Strongyloides ratti and mastocytosis induced by administration of interleukin-3 in mice // Immunology. 1993. Vol. 80, N 1. P. 116–121.
- Sasaki Y., Yoshimoto T., Maruyama H., et al. IL-18 with IL-2 protects against Strongyloides venezuelensis infection by activating mucosal mast cell-dependent type 2 innate immunity // J Exp Med. 2005. Vol. 202, N 5. P. 607–616. doi: 10.1084/jem.20042202
- Grencis R.K., Else K.J., Huntley J.F., Nishikawa S.I. The in vivo role of stem cell factor (c-kit ligand) on mastocytosis and host protective immunity to the intestinal nematode Trichinella spiralis in mice // Parasite Immunol. 1993. Vol. 15, N 1. P. 55–59. doi: 10.1111/j.1365-3024.1993.tb00572.x
- Donaldson L.E., Schmitt E., Huntley J.F., et al. A critical role for stem cell factor and c-kit in host protective immunity to an intestinal helminth // Int Immunol. 1996. Vol. 8, N 4. P. 559–67. doi: 10.1093/intimm/8.4.559
- Lantz C.S., Boesiger J., Song C.H., et al. Role for interleukin-3 in mast-cell and basophil development and in immunity to parasites. Nature // 1998. Vol. 392, N 6671. P. 90–93. doi: 10.1038/32190
- Koyama K., Ito Y. Mucosal mast cell responses are not required for protection against infection with the murine nematode parasite Trichuris muris // Parasite Immunol. 2000. Vol. 22, N 1. P. 13–20. doi: 10.1046/j.1365-3024.2000.00270.x
- Knight P.A., Wright S.H., Lawrence C.E., et al. Delayed expulsion of the nematode Trichinella spiralis in mice lacking the mucosal mast cell-specific granule chymase, mouse mast cell protease-1 // J Exp Med. 2000. Vol. 192, N 12. P. 1849–1856. doi: 10.1084/jem.192.12.1849
- McKean P.G., Pritchard D.I. The action of a mast cell protease on the cuticular collagens of Necator americanus // Parasite Immunol. 1989. Vol. 11, N 3. P. 293–297. doi: 10.1111/j.1365-3024.1989.tb00667.x
- Marzio L., Blennerhassett P., Vermillion D., et al. Distribution of mast cells in intestinal muscle of nematode-sensitized rats // Am J Physiol. 1992. Vol. 262, N 3, Pt 1. P. G477–482. doi: 10.1152/ajpgi.1992.262.3.G477
- Madden K.B., Whitman L., Sullivan C., et al. Role of STAT6 and mast cells in IL-4- and IL-13-induced alterations in murine intestinal epithelial cell function // J Immunol. 2002. Vol. 169, N 8. P. 4417–4422. doi: 10.4049/jimmunol.169.8.4417
- McDermott J.R., Bartram R.E., Knight P.A., et al. Mast cells disrupt epithelial barrier function during enteric nematode infection // Proc Natl Acad Sci USA. 2003. Vol. 100, N 13. P. 7761–7766. doi: 10.1073/pnas.1231488100
- Maruyama H., Yabu Y., Yoshida A., et al. A role of mast cell glycosaminoglycans for the immunological expulsion of intestinal nematode, Strongyloides venezuelensis // J Immunol. 2000. Vol. 164, N 7. P. 3749–3754. doi: 10.4049/jimmunol.164.7.3749
- Ohnmacht C., Voehringer D. Basophils protect against reinfection with hookworms independently of mast cells and memory Th2 cells // J Immunol. 2010. Vol. 184, N 1. P. 344–350. doi: 10.4049/jimmunol.0901841
- Ohnmacht C., Schwartz C., Panzer M., et al. Basophils orchestrate chronic allergic dermatitis and protective immunity against helminths // Immunity. 2010. Vol. 33, N 3. P. 364–374. doi: 10.1016/j.immuni.2010.08.011
- Sullivan B.M., Liang H.E., Bando J.K., et al. Genetic analysis of basophil function in vivo // Nat Immunol. 2011. Vol. 12, N 6. P. 527–535. doi: 10.1038/ni.2036
- Linnemann L.C., Reitz M., Feyerabend T.B., et al. Limited role of mast cells during infection with the parasitic nematode Litomosoides sigmodontis // PLoS Negl Trop Dis. 2020. Vol. 14, N 7. P. e0008534. doi: 10.1371/journal.pntd.0008534
- Гущин ИС. Взаимодействие тучных клеток и эозинофилов в аллергическом ответе // Российский Аллергологический Журнал. 2020. Т. 17, № 2. С. 5–17. doi: 10.36691/RJA1363
- Behm C.A., Ovington K.S. The role of eosinophils in parasitic helminth infections: insights from genetically modified mice // Parasitol Today. 2000. Vol. 16, N 5. P. 202–209. doi: 10.1016/s0169-4758(99)01620-8
- Butterworth A.E. Cell-mediated damage to helminths // Adv Parasitol. 1984. Vol. 23. P. 143–235. doi: 10.1016/s0065-308x(08)60287-0
- Hagan P., Wilkins H.A., Blumenthal U.J., et al. Eosinophilia and resistance to Schistosoma haematobium in man // Parasite Immunol. 1985. Vol. 7, N 6. P. 625–632. doi: 10.1111/j.1365-3024.1985.tb00106.x
- Sturrock R.F., Kimani R., Cottrell B.J., et al. Observations on possible immunity to reinfection among Kenyan schoolchildren after treatment for Schistosoma mansoni // Trans R Soc Trop Med Hyg. 1983. Vol. 77, N 3. P. 363–371. doi: 10.1016/0035-9203(83)90166-9
- Butterworth A.E. The eosinophil and its role in immunity to helminth infection // Curr Top Microbiol Immunol. 1977. Vol. 77. Р. 127–168. doi: 10.1007/978-3-642-66740-4_5
- Motran C.C., Silvane L., Chiapello L.S., et al. Helminth infections: recognition and modulation of the immune response by innate immune cells // Front Immunol. 2018. Vol. 9. P. 664. doi: 10.3389/fimmu.2018.00664
- Sasaki O., Sugaya H., Ishida K., Yoshimura K. Ablation of eosinophils with anti-IL-5 antibody enhances the survival of intracranial worms of Angiostrongylus cantonensis in the mouse // Parasite Immunol. 1993. Vol. 15, N 6. P. 349–354. doi: 10.1111/j.1365-3024.1993.tb00619.x
- Ehrens A., Rüdiger N., Heepmann L., et al. Eosinophils and neutrophils eliminate migrating strongyloides ratti larvae at the site of infection in the context of extracellular DNA trap formation // Front Immunol. 2021. Vol. 12. P. 715766. doi: 10.3389/fimmu.2021.715766
- Turner J.D., Pionnier N., Furlong-Silva J., et al. Interleukin-4 activated macrophages mediate immunity to filarial helminth infection by sustaining CCR3-dependent eosinophilia // PLoS Pathog. 2018. Vol. 14, N 3. P. e1006949. doi: 10.1371/journal.ppat.1006949
- Frohberger S.J., Ajendra J., Surendar J., et al. Susceptibility to L. sigmodontis infection is highest in animals lacking IL-4R/IL-5 compared to single knockouts of IL-4R, IL-5 or eosinophils // Parasit Vectors. 2019. Vol. 12, N 1. P. 248. doi: 10.1186/s13071-019-3502-z
- Eriksson J., Reimert C.M., Kabatereine N.B., et al. The 434(G>C) polymorphism within the coding sequence of Eosinophil Cationic Protein (ECP) correlates with the natural course of Schistosoma mansoni infection // Int J Parasitol. 2007. Vol. 37, N 12. P. 1359–1366. doi: 10.1016/j.ijpara.2007.04.001
- Swartz J.M., Dyer K.D., Cheever A.W., et al. Schistosoma mansoni infection in eosinophil lineage-ablated mice // Blood. 2006. Vol. 108, N 7. P. 2420–2427. doi: 10.1182/blood-2006-04-015933
- Sher A., Coffman R.L., Hieny S., Cheever A.W. Ablation of eosinophil and IgE responses with anti-IL-5 or anti-IL-4 antibodies fails to affect immunity against Schistosoma mansoni in the mouse // J Immunol. 1990. Vol. 145, N 11. P. 3911–3916.
- Fabre V., Beiting D.P., Bliss S.K., et al. Eosinophil deficiency compromises parasite survival in chronic nematode infection // J Immunol. 2009. Vol. 182, N 3. P. 1577–1583. doi: 10.4049/jimmunol.182.3.1577
- Klion A.D., Nutman T.B. The role of eosinophils in host defense against helminth parasites // J Allergy Clin Immunol. 2004. Vol. 113, N 1. P. 30–37. doi: 10.1016/j.jaci.2003.10.050
- Kanda A., Yasutaka Y., Van Bui D., et al. Multiple biological aspects of eosinophils in host defense, eosinophil-associated diseases, immunoregulation, and homeostasis: is their role beneficial, detrimental, regulator, or bystander? // Biol Pharm Bull. 2020. Vol. 43, N 1. P. 20–30. doi: 10.1248/bpb.b19-00892
- Mpairwe H., Amoah A.S. Parasites and allergy: Observations from Africa // Parasite Immunol. 2019. Vol. 41, N 6. P. e12589. doi: 10.1111/pim.12589
- Fitzsimmons C.M., Falcone F.H., Dunne D.W. Helminth allergens, parasite-specific IgE, and its protective role in human immunity // Front Immunol. 2014. Vol. 5. P. 61. doi: 10.3389/fimmu.2014.00061
- Grencis R.K., Humphreys N.E., Bancroft A.J. Immunity to gastrointestinal nematodes: mechanisms and myths // Immunol Rev. 2014. Vol. 260, N 1. P. 183–205. doi: 10.1111/imr.12188
- Anthony R.M., Rutitzky L.I., Urban J.F., et al. Protective immune mechanisms in helminth infection // Nat Rev Immunol. 2007. Vol. 7, N 12. P. 975–987. doi: 10.1038/nri2199
- Зеля О.П., Кукина И.В. Бабезиоз человека // Медицинский вестник Северного Кавказа. 2020. Т. 15, № 3. С. 449–455. doi: 10.14300/mnnc.2020.15107
- Сизикова Т.Е., Лебедев В.Н., Пантюхов В.Б., Борисевич С.В. Острая лихорадка с тромбоцитопеническим синдромом: заболевание, вызываемое новым флебовирусом // Вопросы вирусологии. 2017. Т. 62, № 2. С. 60–65. doi: 10.18821/0507-4088-2017-62-2-60-65
- Янковская Я.Д., Чернобровкина Т.Я., Онухова М.П., и др. Некоторые эпидемиологические аспекты инфекций, передающихся иксодовыми клещами, на территории мегаполиса // Архивъ внутренней медицины. 2017. Т. 7, № 6. С. 423–432. doi: 10.20514/2226-6704-2017-7-6-423-432
- Keshavarz B., Erickson L.D., Platts-Mills T.A., Wilson J.M. Lessons in innate and allergic immunity from dust mite feces and tick bites // Front Allergy. 2021. Vol. 2. P. 692643. doi: 10.3389/falgy.2021
- Commins S.P. Diagnosis & management of alpha-gal syndrome: lessons from 2,500 patients // Expert Rev Clin Immunol. 2020. Vol. 16, N 7. P. 667–677. doi: 10.1080/1744666X.2020.1782745
- Trager W. Acquired immunity to ticks // J Parasitol. 1939. Vol. 25, N 1. P. 57–81.
- Wikel S.K. Host immunity to ticks // Annu Rev Entomol. 1996. Vol. 41. P. 1–22. doi: 10.1146/annurev.en.41.010196.000245
- Allen J.R. Immunology of interactions between ticks and laboratory animals // Exp Appl Acarol. 1989. Vol. 7, N 1. P. 5–13. doi: 10.1007/BF01200448
- Wikel S.K. Tick modulation of host immunity: an important factor in pathogen transmission // Int J Parasitol. 1999. Vol. 29, N 6. P. 851–859. doi: 10.1016/s0020-7519(99)00042-9
- Kazimírová M., Štibrániová I. Tick salivary compounds: their role in modulation of host defences and pathogen transmission // Front Cell Infect Microbiol. 2013. Vol. 3. P. 43. doi: 10.3389/fcimb.2013.00043
- Burke G., Wikel S.K., Spielman A., et al.; Tick-borne Infection Study Group. Hypersensitivity to ticks and Lyme disease risk // Emerg Infect Dis. 2005. Vol. 11, N 1. P. 36–41. doi: 10.3201/eid1101.040303
- Wikel S.K., Allen J.R. Acquired resistance to ticks. I. Passive transfer of resistance // Immunology. 1976. Vol. 30, N 3. P. 311–316.
- Brown S.J., Askenase P.W. Amblyomma americanum: requirement for host Fc receptors in antibody-mediated acquired immune resistance to ticks // Exp Parasitol. 1985. Vol. 59, N 2. P. 248–256. doi: 10.1016/0014-4894(85)90079-7
- Askenase P.W., Bagnall B.G., Worms M.J. Cutaneous basophil-associated resistance to ectoparasites (ticks). I. Transfer with immune serum or immune cells // Immunology. 1982. Vol. 45, N 3. P. 501–511.
- Matsuda H., Watanabe N., Kiso Y., et al. Necessity of IgE antibodies and mast cells for manifestation of resistance against larval Haemaphysalis longicornis ticks in mice // J Immunol. 1990. Vol. 144, N 1. P. 259–262.
- Wada T., Ishiwata K., Koseki H., et al. Selective ablation of basophils in mice reveals their nonredundant role in acquired immunity against ticks // J Clin Invest. 2010. Vol. 120, N 8. P. 2867–2875. doi: 10.1172/JCI42680
- Allen J.R. Tick resistance: basophils in skin reactions of resistant guinea pigs // Int J Parasitol. 1973. Vol. 3, N 2. P. 195–200. doi: 10.1016/0020-7519(73)90024-6
- Brown S.J., Askenase P.W. Cutaneous basophil responses and immune resistance of guinea pigs to ticks: passive transfer with peritoneal exudate cells or serum // J Immunol. 1981. Vol. 127, N 5. P. 2163–2167.
- Kimura R., Sugita K., Ito A., et al. Basophils are recruited and localized at the site of tick bites in humans // J Cutan Pathol. 2017. Vol. 44, N 12. P. 1091–1093. doi: 10.1111/cup.13045
- Brown S.J., Galli S.J., Gleich G.J., Askenase P.W. Ablation of immunity to Amblyomma americanum by anti-basophil serum: cooperation between basophils and eosinophils in expression of immunity to ectoparasites (ticks) in guinea pigs // J Immunol. 1982. Vol. 129, N 2. P. 790–796.
- Matsuda H., Fukui K., Kiso Y., Kitamura Y. Inability of genetically mast cell-deficient W/Wv mice to acquire resistance against larval Haemaphysalis longicornis ticks // J Parasitol. 1985. Vol. 71, N 4. P. 444–448.
- Matsuda H., Nakano T., Kiso Y., Kitamura Y. Normalization of anti-tick response of mast cell-deficient W/Wv mice by intracutaneous injection of cultured mast cells // J Parasitol. 1987. Vol. 73, N 1. P. 155–160.
- Den Hollander N., Allen J.R. Dermacentor variabilis: resistance to ticks acquired by mast cell-deficient and other strains of mice // Exp Parasitol. 1985. Vol. 59, N 2. P. 169–179. doi: 10.1016/0014-4894(85)90069-4
- Steeves E.B., Allen J.R. Tick resistance in mast cell-deficient mice: histological studies // Int J Parasitol. 1991. Vol. 21, N 2. P. 265–268. doi: 10.1016/0020-7519(91)90020-8
- Karasuyama H., Miyake K., Yoshikawa S., et al. How do basophils contribute to Th2 cell differentiation and allergic responses? // Int Immunol. 2018. Vol. 30, N 9. P. 391–396. doi: 10.1093/intimm/dxy026
- Kojima T., Obata K., Mukai K., et al. Mast cells and basophils are selectively activated in vitro and in vivo through CD200R3 in an IgE-independent manner // J Immunol. 2007. Vol. 179, N 10. P. 7093–7100. doi: 10.4049/jimmunol.179.10.7093
- Wikel S.K. Histamine content of tick attachment sites and the effects of H1 and H2 histamine antagonists on the expression of resistance // Ann Trop Med Parasitol. 1982. Vol. 76, N 2. P. 179–185. doi: 10.1080/00034983.1982.11687525
- Kemp D.H, Bourne A. Boophilus microplus: the effect of histamine on the attachment of cattle-tick larvae--studies in vivo and in vitro // Parasitology. 1980. Vol. 80, N 3. P. 487–496. doi: 10.1017/s0031182000000950
- Brossard M. Rabbits infested with adult Ixodes ricinus L.: effects of mepyramine on acquired resistance // Experientia. 1982. Vol. 38, N 6. P. 702–704. doi: 10.1007/BF01964106
- Tabakawa Y., Ohta T., Yoshikawa S., et al. Histamine released from skin-infiltrating basophils but not mast cells is crucial for acquired tick resistance in mice // Front Immunol. 2018. Vol. 9. P. 1540. doi: 10.3389/fimmu.2018.01540
- McCraw A.J., Chauhan J., Bax H.J., et al. Insights from IgE immune surveillance in allergy and cancer for anti-tumour ige treatments // Cancers (Basel). 2021. Vol. 13, N 17. P. 4460. doi: 10.3390/cancers13174460
- Ure D.M. Negative assoication between allergy and cancer // Scott Med J. 1969. Vol. 14, N 2. P. 51–54. doi: 10.1177/003693306901400203
- Allegra J., Lipton A., Harvey H., et al. Decreased prevalence of immediate hypersensitivity (atopy) in a cancer population // Cancer Res. 1976. Vol. 36, N 9, pt. 1. P. 3225–3226.
- Augustin R., Chandradasa K.D. IgE levels and allergic skin reactions in cancer and non-cancer patients // Int Arch Allergy Appl Immunol. 1971. Vol. 41, N 1. P. 141–143. doi: 10.1159/000230505
- McCormick D.P., Ammann A.J., Ishizaka K., et al. A study of allergy in patients with malignant lymphoma and chronic lymphocytic leukemia // Cancer. 1971. Vol. 27, N 1. P. 93–99. doi: 10.1002/1097-0142(197101)27:1<93::aid-cncr2820270114>3.0.co;2-0
- Wang H., Diepgen T.L. Is atopy a protective or a risk factor for cancer? A review of epidemiological studies // Allergy. 2005. Vol. 60, N 9. P. 1098–1111. doi: 10.1111/j.1398-9995.2005.00813.x
- Turner M.C. Epidemiology: allergy history, IgE, and cancer // Cancer Immunol Immunother. 2012. Vol. 61, N 9. P. 1493–1510. doi: 10.1007/s00262-011-1180-6
- Josephs D.H., Spicer J.F., Corrigan C.J., et al. Epidemiological associations of allergy, IgE and cancer // Clin Exp Allergy. 2013. Vol. 43, N 10. P. 1110–1123. doi: 10.1111/cea.12178
- Hayes M.D., Ward S., Crawford G., et al. Inflammation-induced IgE promotes epithelial hyperplasia and tumour growth // Elife. 2020. Vol. 9. P. e51862. doi: 10.7554/eLife.51862
- Karim A.F., Westenberg L.E., Eurelings L.E., et al. The association between allergic diseases and cancer: a systematic review of the literature // Neth J Med. 2019. Vol. 77, N 2. P. 42–66.
- Wang L., Bierbrier R., Drucker A.M., Chan A.W. Noncutaneous and cutaneous cancer risk in patients with atopic dermatitis: a systematic review and meta-analysis // JAMA Dermatol. 2020. Vol. 156, N 2. P. 158–171. doi: 10.1001/jamadermatol.2019.3786
- Hemminki K., Försti A., Fallah M., et al. Risk of cancer in patients with medically diagnosed hay fever or allergic rhinitis // Int J Cancer. 2014. Vol. 135, N 10. P. 2397–2403. doi: 10.1002/ijc.28873
- Kozłowska R., Bożek A., Jarząb J. Association between cancer and allergies // Allergy Asthma Clin Immunol. 2016. Vol. 12. P. 39. doi: 10.1186/s13223-016-0147-8
- Rosenberger A., Bickeböller H., McCormack V., et al. Asthma and lung cancer risk: a systematic investigation by the International Lung Cancer Consortium // Carcinogenesis. 2012. Vol. 33, N 3. P. 587–597. doi: 10.1093/carcin/bgr307
- Rittmeyer D., Lorentz A. Relationship between allergy and cancer: an overview // Int Arch Allergy Immunol. 2012. Vol. 159, N 3. P. 216–225. doi: 10.1159/000338994
- Ji J., Shu X., Li X., et al. Cancer risk in hospitalised asthma patients // Br J Cancer. 2009. Vol. 100, N 5. P. 829–833. doi: 10.1038/sj.bjc.6604890
- Arana A., Wentworth C.E., Fernández-Vidaurre C., et al. Incidence of cancer in the general population and in patients with or without atopic dermatitis in the U.K // Br J Dermatol. 2010. Vol. 163, N 5. P. 1036–1043. doi: 10.1111/j.1365-2133.2010.09887.x
- Talbot-Smith A., Fritschi L., Divitini M.L., et al. Allergy, atopy, and cancer: a prospective study of the 1981 Busselton cohort // Am J Epidemiol. 2003. Vol. 157, N 7. P. 606–612. doi: 10.1093/aje/kwg020
- Gandini S., Stanganelli I., Palli D., et al. Atopic dermatitis, naevi count and skin cancer risk: A meta-analysis // J Dermatol Sci. 2016. Vol. 84, N 2. P. 137–143. doi: 10.1016/j.jdermsci.2016.07.009
- Jensen A.O., Svaerke C., Körmendiné Farkas D., et al. Atopic dermatitis and risk of skin cancer: a Danish nationwide cohort study (1977–2006) // Am J Clin Dermatol. 2012. Vol. 13, N 1. P. 29–36. doi: 10.2165/11593280-000000000-00000
- Hwang C.Y., Chen Y.J., Lin M.W., et al. Cancer risk in patients with allergic rhinitis, asthma and atopic dermatitis: a nationwide cohort study in Taiwan // Int J Cancer. 2012. Vol. 130, N 5. P. 1160–1167. doi: 10.1002/ijc.26105
- Wiemels J.L., Wiencke J.K., Li Z., et al. Risk of squamous cell carcinoma of the skin in relation to IgE: a nested case-control study // Cancer Epidemiol Biomarkers Prev. 2011. Vol. 20, N 11. P. 2377–2383. doi: 10.1158/1055-9965.EPI-11-0668
- Cheng J., Zens M.S., Duell E., et al. History of allergy and atopic dermatitis in relation to squamous cell and Basal cell carcinoma of the skin // Cancer Epidemiol Biomarkers Prev. 2015. Vol. 24, N 4. P. 749–754. doi: 10.1158/1055-9965.EPI-14-1243
- Wulaningsih W., Holmberg L., Garmo H., et al. Investigating the association between allergen-specific immunoglobulin E, cancer risk and survival // Oncoimmunology. 2016. Vol. 5, N 6. P. e1154250. doi: 10.1080/2162402X.2016.1154250
- Halling-Overgaard A.S., Ravnborg N., Silverberg J.I., et al. Atopic dermatitis and cancer in solid organs: a systematic review and meta-analysis // J Eur Acad Dermatol Venereol. 2019. Vol. 33, N 2. P. e81–e82. doi: 10.1111/jdv.15230
- Merrill R.M., Isakson R.T., Beck R.E. The association between allergies and cancer: what is currently known? // Ann Allergy Asthma Immunol. 2007. Vol. 99, N 2. P. 102–116; quiz 117-9, 150. doi: 10.1016/S1081-1206(10)60632-1
- Bosetti C., Talamini R., Franceschi S., et al. Allergy and the risk of selected digestive and laryngeal neoplasms // Eur J Cancer Prev. 2004. Vol. 13, N 3. P. 173–176. doi: 10.1097/01.cej.0000130016.85687.cf
- Fereidouni M., Ferns G.A., Bahrami A. Current status and perspectives regarding the association between allergic disorders and cancer // IUBMB Life. 2020. Vol. 72, N 7. P. 1322–1339. doi: 10.1002/iub.2285
- Vesterinen E., Pukkala E., Timonen T., Aromaa A. Cancer incidence among 78,000 asthmatic patients // Int J Epidemiol. 1993. Vol. 22, N 6. P. 976–982. doi: 10.1093/ije/22.6.976
- Amirian E.S., Marquez-Do D., Bondy M.L. Scheurer M.E. Antihistamine use and immunoglobulin E levels in glioma risk and prognosis // Cancer Epidemiol. 2013. Vol. 37, N 6. P. 908–912. doi: 10.1016/j.canep.2013.08.004
- McCarthy B.J., Rankin K., Il’yasova D., et al. Assessment of type of allergy and antihistamine use in the development of glioma // Cancer Epidemiol Biomarkers Prev. 2011. Vol. 20, N 2. P. 370–378. doi: 10.1158/1055-9965
- Linos E., Raine T., Alonso A., Michaud D. Atopy and risk of brain tumors: a meta-analysis // J Natl Cancer Inst. 2007. Vol. 99, N 20. P. 1544–1550. doi: 10.1093/jnci/djm170
- Fritz I., Wagner P., Olsson H. Improved survival in several cancers with use of H1-antihistamines desloratadine and loratadine // Transl Oncol. 2021. Vol. 14, N 4. P. 101029. doi: 10.1016/j.tranon.2021.101029
- Van Hemelrijck M., Garmo H., Binda E., et al. Immunoglobulin E and cancer: a meta-analysis and a large Swedish cohort study // Cancer Causes Control. 2010. Vol. 21, N 10. P. 1657–1667. doi: 10.1007/s10552-010-9594-6
- Calboli F.C., Cox D.G., Buring J.E., et al. Prediagnostic plasma IgE levels and risk of adult glioma in four prospective cohort studies // J Natl Cancer Inst. 2011. Vol. 103, N 21. P. 1588–1595. doi: 10.1093/jnci/djr361
- Wiemels J.L., Wiencke J.K., Patoka J., et al. Reduced immunoglobulin E and allergy among adults with glioma compared with controls // Cancer Res. 2004. Vol. 64, N 22. P. 8468–8473. doi: 10.1158/0008-5472
- Nieters A., Łuczyńska A., Becker S., et al. Prediagnostic immunoglobulin E levels and risk of chronic lymphocytic leukemia, other lymphomas and multiple myeloma-results of the European Prospective Investigation into Cancer and Nutrition // Carcinogenesis. 2014. Vol. 35, N 12. P. 2716–2722. doi: 10.1093/carcin/bgu188
- Ferastraoaru D., Bax H.J., Bergmann C., et al. AllergoOncology: ultra-low IgE, a potential novel biomarker in cancer-a Position Paper of the European Academy of Allergy and Clinical Immunology (EAACI) // Clin Transl Allergy. 2020. Vol. 10. P. 32. doi: 10.1186/s13601-020-00335-w
- Jensen-Jarolim E., Achatz G., Turner M.C., et al. AllergoOncology: the role of IgE-mediated allergy in cancer // Allergy. 2008. Vol. 63, N 10. P. 1255–1266. doi: 10.1111/j.1398-9995.2008.01768.x
- Singer J., Achatz-Straussberger G., Bentley-Lukschal A., et al. AllergoOncology: High innate IgE levels are decisive for the survival of cancer-bearing mice // World Allergy Organ J. 2019. Vol. 12, N 7. P. 100044. doi: 10.1016/j.waojou.2019.100044
- Fu S.L., Pierre J., Smith-Norowitz T.A., et al. Immunoglobulin E antibodies from pancreatic cancer patients mediate antibody-dependent cell-mediated cytotoxicity against pancreatic cancer cells // Clin Exp Immunol. 2008. Vol. 153, N 3. P. 401–409. doi: 10.1111/j.1365-2249.2008.03726.x
- Daniels T.R., Leuchter R.K., Quintero R., et al. Targeting HER2/neu with a fully human IgE to harness the allergic reaction against cancer cells // Cancer Immunol Immunother. 2012. Vol. 61, N 7. P. 991–1003. doi: 10.1007/s00262-011-1150-z
- Karagiannis P., Singer J., Hunt J., et al. Characterisation of an engineered trastuzumab IgE antibody and effector cell mechanisms targeting HER2/neu-positive tumour cells // Cancer Immunol Immunother. 2009. Vol. 58, N 6. P. 915–930. doi: 10.1007/s00262-008-0607-1
- Spillner E., Plum M., Blank S., et al. Recombinant IgE antibody engineering to target EGFR // Cancer Immunol Immunother. 2012. Vol. 61, N 9. P. 1565–1573. doi: 10.1007/s00262-012-1287-4
- Chauhan J., McCraw A.J., Nakamura M., et al. IgE Antibodies against Cancer: Efficacy and Safety // Antibodies (Basel). 2020. Vol. 9, N 4. P. 55. doi: 10.3390/antib9040055
- Busse W., Buhl R., Fernandez Vidaurre C., et al. Omalizumab and the risk of malignancy: results from a pooled analysis // J Allergy Clin Immunol. 2012. Vol. 129, N 4. P. 983–989.e6. doi: 10.1016/j.jaci.2012.01.033
- Long A., Rahmaoui A., Rothman K.J., et al. Incidence of malignancy in patients with moderate-to-severe asthma treated with or without omalizumab // J Allergy Clin Immunol. 2014. Vol. 134, N 3. P. 560–567.e4. doi: 10.1016/j.jaci.2014.02.007
- Johnston A., Smith C., Zheng C., et al. Influence of prolonged treatment with omalizumab on the development of solid epithelial cancer in patients with atopic asthma and chronic idiopathic urticaria: A systematic review and meta-analysis // Clin Exp Allergy. 2019. Vol. 49, N 10. P. 1291–1305. doi: 10.1111/cea.13457
- Mota D., Rama T.A., Severo M., Moreira A. Potential cancer risk with omalizumab? A disproportionality analysis of the WHO’s VigiBase pharmacovigilance database // Allergy. 2021. Vol. 76, N 10. P. 3209–3211. doi: 10.1111/all.15008
- Schiavoni G., Gabriele L., Mattei F. The tumor microenvironment: a pitch for multiple players // Front Oncol. 2013. Vol. 3. P. 90. doi: 10.3389/fonc.2013.00090
- Lyons D.O., Pullen N.A. Beyond IgE: Alternative Mast Cell Activation Across Different Disease States // Int J Mol Sci. 2020. Vol. 21, N 4. P. 1498. doi: 10.3390/ijms21041498
- Hanahan D., Coussens L.M. Accessories to the crime: functions of cells recruited to the tumor microenvironment // Cancer Cell. 2012. Vol. 21, N 3. P. 309–322. doi: 10.1016/j.ccr.2012.02.022. PMID: 22439926
- Rajput A.B., Turbin D.A., Cheang M.C., et al. Stromal mast cells in invasive breast cancer are a marker of favourable prognosis: a study of 4,444 cases // Breast Cancer Res Treat. 2008. Vol. 107, N 2. P. 249–257. doi: 10.1007/s10549-007-9546-3
- Benyon R.C., Bissonnette E.Y., Befus A.D. Tumor necrosis factor-alpha dependent cytotoxicity of human skin mast cells is enhanced by anti-IgE antibodies // J Immunol. 1991. Vol. 147, N 7. P. 2253–2258.
- Dimitriadou V., Koutsilieris M. Mast cell-tumor cell interactions: for or against tumour growth and metastasis? // Anticancer Res. 1997. Vol. 17, N 3A. P. 1541–1549.
- Mehdawi L., Osman J., Topi G., Sjölander A. High tumor mast cell density is associated with longer survival of colon cancer patients // Acta Oncol. 2016. Vol. 55, N 12. P. 1434–1442. doi: 10.1080/0284186X.2016.1198493
- Johansson A., Rudolfsson S., Hammarsten P., et al. Mast cells are novel independent prognostic markers in prostate cancer and represent a target for therapy // Am J Pathol. 2010. Vol. 177, N 2. P. 1031–1041. doi: 10.2353/ajpath.2010.100070
- Siiskonen H., Poukka M., Bykachev A., et al. Low numbers of tryptase+ and chymase+ mast cells associated with reduced survival and advanced tumor stage in melanoma // Melanoma Res. 2015. Vol. 25, N 6. P. 479–485. doi: 10.1097/CMR.0000000000000192
- Pittoni P., Tripodo C., Piconese S., et al. Mast cell targeting hampers prostate adenocarcinoma development but promotes the occurrence of highly malignant neuroendocrine cancers // Cancer Res. 2011. Vol. 71, N 18. P. 5987–5997. doi: 10.1158/0008-5472.CAN-11-1637
- Pittoni P., Colombo M.P. The dark side of mast cell-targeted therapy in prostate cancer // Cancer Res. 2012. Vol. 72, N 4. P. 831–835. doi: 10.1158/0008-5472.CAN-11-3110
- Carlini M.J., Dalurzo M.C., Lastiri J.M., et al. Mast cell phenotypes and microvessels in non-small cell lung cancer and its prognostic significance // Hum Pathol. 2010. Vol. 41, N 5. P. 697–705. doi: 10.1016/j.humpath.2009.04.029
- Grimbaldeston M.A., Pearce A.L., Robertson B.O., et al. Association between melanoma and dermal mast cell prevalence in sun-unexposed skin // Br J Dermatol. 2004. Vol. 150, N 5. P. 895–903. doi: 10.1111/j.1365-2133.2004.05966.x
- Grujic M., Paivandy A., Gustafson A.M., et al. The combined action of mast cell chymase, tryptase and carboxypeptidase A3 protects against melanoma colonization of the lung // Oncotarget. 2017. Vol. 8, N 15. P. 25066–25079. doi: 10.18632/oncotarget.15339
- Caruso R.A., Fedele F., Zuccalà V., et al. Mast cell and eosinophil interaction in gastric carcinomas: ultrastructural observations // Anticancer Res. 2007. Vol. 27, N 1A. P. 391–394.
- Da Silva E.Z., Jamur M.C., Oliver C. Mast cell function: a new vision of an old cell // J Histochem Cytochem. 2014. Vol. 62, N 10. P. 698–738. doi: 10.1369/0022155414545334
- Dyduch G., Kaczmarczyk K., Okoń K. Mast cells and cancer: enemies or allies? // Pol J Pathol. 2012. Vol. 63, N 1. P. 1–7.
- Poncin A., Onesti C.E., Josse C., et al. Immunity and Breast Cancer: Focus on Eosinophils // Biomedicines. 2021. Vol. 9, N 9. P. 1087. doi: 10.3390/biomedicines9091087
- Mattei F., Andreone S., Marone G., et al. Eosinophils in the tumor microenvironment // Adv Exp Med Biol. 2020. Vol. 1273. P. 1–28. doi: 10.1007/978-3-030-49270-0_1
- Caruso R.A., Branca G., Fedele F., et al. Eosinophil-Specific granules in tumor cell cytoplasm: unusual ultrastructural findings in a case of diffuse-type gastric carcinoma // Ultrastruct Pathol. 2015. Vol. 39, N 4. P. 226–230. doi: 10.3109/01913123.2014.991886
- Grisaru-Tal S., Itan M., Klion A.D., Munitz A. A new dawn for eosinophils in the tumour microenvironment // Nat Rev Cancer. 2020. Vol. 20, N 10. P. 594–607. doi: 10.1038/s41568-020-0283-9
- Kanda A., Yasutaka Y., Van Bui D., et al. Multiple biological aspects of eosinophils in host defense, eosinophil-associated diseases, immunoregulation, and homeostasis: is their role beneficial, detrimental, regulator, or bystander? // Biol Pharm Bull. 2020. Vol. 43, N 1. P. 20–30. doi: 10.1248/bpb.b19-00892
- Iwasaki K., Torisu M., Fujimura T. Malignant tumor and eosinophils. I. Prognostic significance in gastric cancer // Cancer. 1986. Vol. 58, N 6. P. 1321–1327. doi: 10.1002/1097-0142(19860915)58:6<1321::aid-cncr2820580623>3.0.co;2-o
- Jong E.C., Klebanoff S.J. Eosinophil-mediated mammalian tumor cell cytotoxicity: role of the peroxidase system // J Immunol. 1980. Vol. 124, N 4. P. 1949–1953.
- Reichman H., Itan M., Rozenberg P., et al. Activated eosinophils exert antitumorigenic activities in colorectal cancer // Cancer Immunol Res. 2019. Vol. 7, N 3. P. 388–400. doi: 10.1158/2326-6066.CIR-18-0494
- Tanizaki J., Haratani K., Hayashi H., et al. peripheral blood biomarkers associated with clinical outcome in non-small cell lung cancer patients treated with nivolumab // J Thorac Oncol. 2018. Vol. 13, N 1. P. 97–105. doi: 10.1016/j.jtho.2017.10.030
- Dorta R.G., Landman G., Kowalski L.P., et al. Tumour-associated tissue eosinophilia as a prognostic factor in oral squamous cell carcinomas // Histopathology. 2002. Vol. 41, N 2. P. 152–157. doi: 10.1046/j.1365-2559.2002.01437.x
- Da Silva J.M., Queiroz-Junior C.M., Batista A.C., et al. Eosinophil depletion protects mice from tongue squamous cell carcinoma induced by 4-nitroquinoline-1-oxide // Histol Histopathol. 2014. Vol. 29, N 3. P. 387–396. doi: 10.14670/HH-29.387
- Chouliaras K., Tokumaru Y., Asaoka M., et al. Prevalence and clinical relevance of tumor-associated tissue eosinophilia (TATE) in breast cancer // Surgery. 2021. Vol. 169, N 5. P. 1234–1239. doi: 10.1016/j.surg.2020.07.052
- Buder-Bakhaya K., Hassel J.C. Biomarkers for clinical benefit of immune checkpoint inhibitor treatment-a review from the melanoma perspective and beyond // Front Immunol. 2018. Vol. 9. P. 1474. doi: 10.3389/fimmu.2018.01474
- Gebhardt C., Sevko A., Jiang H., et al. Myeloid cells and related chronic inflammatory factors as novel predictive markers in melanoma treatment with ipilimumab // Clin Cancer Res. 2015. Vol. 21, N 24. P. 5453–5439. doi: 10.1158/1078-0432.CCR-15-0676
- Martens A., Wistuba-Hamprecht K., Geukes Foppen M., et al. Baseline peripheral blood biomarkers associated with clinical outcome of advanced melanoma patients treated with ipilimumab // Clin Cancer Res. 2016. Vol. 22, N 12. P. 2908–2918. doi: 10.1158/1078-0432.CCR-15-2412
- Weide B., Martens A., Hassel J.C., et al. Baseline biomarkers for outcome of melanoma patients treated with pembrolizumab // Clin Cancer Res. 2016. Vol. 22, N 22. P. 5487–5496. doi: 10.1158/1078-0432.CCR-16-0127
- Moreira A., Leisgang W., Schuler G., Heinzerling L. Eosinophilic count as a biomarker for prognosis of melanoma patients and its importance in the response to immunotherapy // Immunotherapy. 2017. Vol. 9, N 2. P. 115–121. doi: 10.2217/imt-2016-0138
- Grisaru-Tal S., Dulberg S., Beck L., et al. Metastasis-Entrained eosinophils enhance lymphocyte-mediated antitumor immunity // Cancer Res. 2021. Vol. 81, N 21. P. 5555–5571. doi: 10.1158/0008-5472.CAN-21-0839
- Van Driel W.J., Hogendoorn P.C., Jansen F.W., et al. Tumor-associated eosinophilic infiltrate of cervical cancer is indicative for a less effective immune response // Hum Pathol. 1996. Vol. 27, N 9. P. 904–911. doi: 10.1016/s0046-8177(96)90216-6
- Xie F., Liu L.B., Shang W.Q., et al. The infiltration and functional regulation of eosinophils induced by TSLP promote the proliferation of cervical cancer cell // Cancer Lett. 2015. Vol. 364, N 2. P. 106–117. doi: 10.1016/j.canlet.2015.04.029
- Tan L.D., Schaeffer B. Alismail A. Parasitic (Helminthic) infection while on asthma biologic treatment: not everything is what it seems // J Asthma Allergy. 2019. Vol. 12. P. 415–420. doi: 10.2147/JAA.S223402
- Oda Y., Takahashi C., Harada S., et al. Discovery of anti-inflammatory physiological peptides that promote tissue repair by reinforcing epithelial barrier formation // Sci Adv. 2021. Vol. 7, N 47. P. eabj6895. doi: 10.1126/sciadv.abj6895
Дополнительные файлы
