Dominant Cladosporium and Alternaria fungal spores in the air of Karakol

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Concentration of fungal spores in the air often exceeds concentration of pollen 100–1,000 fold, reaching 50,000 fungal spores/m3, which is affected by a plethora of environmental factors including precipitation, temperature and wind. Pigmented spores of Cladosporium and Alternaria are prevalent in habitats of the most regions, since colorless spores do not survive ultraviolet radiation. Aerospores are often considered an underestimated source of respiratory allergies, therefore, information on their seasonal trends is significant for both promoting public awareness and assisting medical specialists in effective diagnostics, prevention and treatment of fungal diseases.

AIM: To analyze the annual spore index, seasonality and threshold concentrations of dominant fungal spores Cladosporium and Alternaria in the air of Karakol.

MATERIALS AND METHODS: Aerobiological monitoring was carried out from April to October 2015–2017 using a standardized volumetric Lanzoni pollen trap in the city of Karakol (1716 m above sea level, mid-mountain). A specially developed identifier and atlas were used for microscopic identification of fungal spores.

RESULTS: The concentration curve of dominant Cladosporium and Alternaria fungal spores in the air of Karakol is unimodal with often overlapping quantitative characteristics. Simultaneously, strong interannual variability of their atmospheric levels was observed, exhibiting dependance on meteorological parameters, especially temperature and precipitation. The maximum peak of Cladosporium aerospores was recorded on June 30, 2017 — 12,386, and Alternaria — 5,376 fungal spores/m3 in an extremely dry year (July 28, 2015). Peak concentrations of Cladosporium and Alternaria fungal spores drastically exceeded clinical threshold values in the air.

CONCLUSION: Cladosporium and Alternaria aerospores are recognized as dominant taxa, due to their phytopathogenic and allergenic properties and their predominance in the atmosphere of Karakol for long periods of time. The curve of their spore concentration is unimodal. Variations in the concentration of aerospores in different years positively correlated with air temperature, especially in the 3rd ten-day period of July 2015, when the maximum peak of spores consisted of 56 % Cladosporium and 13.5 % Alternaria spores and the highest air temperature was recorded (33.5 °С).

About the authors

Vera N. Kobzar

Kyrgyz-Russian Slavic University

Author for correspondence.
Email: kobzarvn@yandex.ru
ORCID iD: 0000-0001-9910-0148
SPIN-code: 4669-6355

MD, Dr. Sci. (Biology), Professor

Kyrgyzstan, Bishkek

Kymbatkul B. Osmonbaeva

Issyk-Kul State University

Email: kymbat.950307@gmail.com
ORCID iD: 0000-0001-9606-9392
SPIN-code: 6501-0823

Cand. Sci. (Biology), Associate Professor

Kyrgyzstan, Karakol

References

  1. Castro E Silva DM, Marcusso RMN, Barbosa CGG, et al. Air pollution and its impact on the concentration of airborne fungi in the megacity of San Paulo, Brazil. Heliyon. 2020;6(10):e05065. doi: 10.1016/j.heliyon.2020 EDN: RNLGTS
  2. Hughes KM, Price D, Torriero AAJ, et al. Impact of fungal spores on asthma prevalence and hospitalization. Int J Mol Sci. 2022;23(8):4313. doi: 10.3390/ijms23084313 EDN: DIAQUP
  3. Wardlaw AJ, Rick EM, Pur Ozyigit L, et al. New perspectives in the diagnosis and management of allergic fungal airway disease. J Asthma Allergy. 2021;14:557–573. doi: 10.2147/JAA.S251709 EDN: ZKXSCN
  4. Anees-Hill S, Douglas P, Pashley CH, et al. A systematic review of outdoor airborne fungal spore seasonality across Europe and the implications for health. Sci Total Environ. 2022;818:151716. doi: 10.1016/j.scitotenv
  5. Gioulekas D., Damialis A, Papakosta D, et al. Allergenic fungi spore records (15 years) and sensitization in patients with respiratory allergy in Thessaloniki-Greece. J Investig Allergol Clin Immunol. 2004;14(3):225–231.
  6. Gharbi D, Mobayed HM, Ali RM, et al. First volumetric records of airborne Cladosporium and Alternaria spores in the atmosphere of Al Khor (northern Qatar): a preliminary survey. Aerobiologia. 2022;38:329–342. doi: 10.1007/s10453-022-09746-7 EDN: KVYOZG
  7. Patel TY, Buttner M, Rivas D, et al. Variation in airborne fungal spore concentrations among five monitoring locations in a desert urban environment. Environ Monit Assess. 2018;190(11):634. doi: 10.1007/s10661-018-7008-5 EDN: RXZMDO
  8. Taia WK, Ismael MI, Bassioni E. Study of the airborne fungal spores in Rosetta, Egypt. Eur Exp Biol. 2019;9(1):4. doi: 10.21767/2248-9215.100081
  9. Segvic Klaric M, Pepeljnjak S. A year-round aeromycological study in Zagreb area, Croatia. Ann Agric Environ Med. 2006;13(1):55–64.
  10. Grinn-Gofron A, Ceter T, Pinaret NM, et al. Airborne fungal spore load and season timing in the Central and Eastern Black Sea region of Turkey explained by climate conditions and land use. Agricultural and Forest Meteorology. 2020;295:108191. doi: 10.1016/j.agrformet.2020.108191 EDN: FECDJG
  11. Huffman JA, Prenni AJ, DeMott PJ, et al. High concentrations of biological aerosol particles and ice nuclei during and after rain. Atmos Chem Phys. 2013;13(13): 6151–6164. doi: 10.5194/acp-13-6151-2013 EDN: RIGYBN
  12. Rathnayake CM, Metwali N, Jayarathne T, et al. Influence of rain on the abundance of bioaerosols in fine and coarse particles. Atmos Chem Phys. 2017;17(3):2459–2475. doi: 10.5194/acp-17-2459-2017
  13. Nnadi NE, Carter DA. Climate change and the emergence of fungal pathogens. PLoS Pathog. 2021;17(4):1–6. doi: 10.1371/journal.ppat.1009503 EDN: GGLLXW
  14. Troutt C, Levetin E. Correlation of spring spore concentrations and meteorological conditions in Tulsa, Oklahoma. Int J Biometeorol. 2001;45(2):64–74. doi: 10.1007/s004840100087 EDN: ATIFMZ
  15. Di Filippo P, Pomata D, Riccardi C, et al. Fungal contribution to size-segregated aerosol measured through biomarkers. Atmos Environ. 2013;64:132–140. doi: 10.1016/j.atmosenv.2012.10.010 EDN: RIGWSX
  16. Niu M, Hu W, Cheng B, et al. Influence of rainfall on fungal aerobiota in the urban atmosphere over Tianjin, China: a case study. Atmos Environ: X. 2021;12:100137. doi: 10.1016/j.aeaoa.2021.100137 EDN: GRMKMP
  17. Woudenberg JH, Seidl MF, Groenewald JZ, et al. Alternaria section. Alternaria: species, formae speciales or pathotypes? Stud Mycol. 2015;82:1–21. doi: 10.1016/j.simyco.2015.07.001 EDN: WRBVRL
  18. Chaerani R, Voorrips RE. Tomato early blight (Alternaria Solani): the pathogen, genetics, and breeding for resistance. J Gen Plant Pathol. 2006;72:335–347. doi: 10.1007/s10327-006-0299-3 EDN: XUAPHD
  19. Nowicki M, Nowakowska M, Niezgoda A, Kozik E. Alternaria black spot of crucifers: symptoms, importance of disease, and perspectives of resistance breeding. Veg Crop Res Bull. 2012;76:5–19. doi: 10.2478/v10032-012-0001-6
  20. Thomma BP, Van Esse HP, Crous PW, de Wit PJ. Cladosporium Fulvum (syn. Passalora fulva), a highly specialized plant pathogen as a model for functional studies on plant pathogenic Mycosphaerellaceae. Mol Plant Pathol 2005;6(4):379–393. doi: 10.1111/j.1364-3703.2005.00292.x
  21. Damialis A, Kaimakamis E, Konoglou M, et al. Estimating the abundance of airborne pollen and fungal spores at variable elevations using an aircraft: how high can they fly? Sci Rep. 2017;7:44535. doi: 10.1038/srep44535
  22. Osmonbaeva KB, Churyukina EV, Dzhambekova GS, Nazarova EV. Aeroallergen concentrations in urban areas and the effect of air temperature. Russian Medical Inquiry. 2024;8(3):124–131. (In Russ.). doi: 10.32364/2587-6821-2024-8-3-2 EDN: JTUMUG
  23. Talley SM, Coley PD, Kursar TA. The effects of weather on fungal abundance and richness among 25 communities in the Intermountain West. BMC Ecol. 2002;2:7. doi: 10.1186/1472-6785-2-7 EDN: MWIEHF
  24. Gonzalez-Parrado Z, Fuertes-Rodriguez CR, De Castro-Alfageme S, et al. Analisis de esporas fungicas alergenicas en la atmosfera de Leon, Miranda de Ebro y Zamora (Espana). Polen. 2009;19:31–47. (In Spanish).
  25. Gonzalez Minero FJ, Candau P. Alternaria y Cladosporium: aeroalergenos en la atmosfera de Huelva. Stvdia Botanica. 1994;13:83–86. (In Spanish).
  26. Nitiu DS, Mallo AC. Variaciones en la estacionalidad de polen y esporas fungicas en la atmosfera de la ciudad de La Plata (Argentina). Bol Soc Argent Bot. 2011;43: 297–304. (In Spanish).
  27. Adhikari A, Sen MM, Gupta-Bhattacharya S, Chanda S. Airborne viable, non-viable, and allergenic fungi in a rural agricultural area of India: a 2-year study at five outdoor sampling stations. Sci Total Environ. 2004;326(1–3):123–141. doi: 10.1016/j.scitotenv.2003.12.007
  28. De la Fuente RA, Tirado-Arias G, Quintero-Nunez M. Educación ambiental. Una contribución en la solución al problema de la contaminación atmosférica. AR Impresiones, Mexicali. 2013. P. 37–77. (In Spanish).
  29. Rocha-Estrada A, Alvarado-Vazquez MA, Gutierrez-Reyes R, et al. Variacion temporal de esporas de Alternaria, Cladosporium, Coprinus, Curvularia y Venturia en el aire del area metropolitana de Monterrey, Nuevo Leon Mexico. Rev Int Contam Ambient. 2013;29(2):155–165. (In Spanish).
  30. Schevkova J, Kovach J. First calendar of fungal spores for the atmosphere of Bratislava, Slovakia. Aerobiology. 2019;35(2):343–356. doi: 10.1007/s10453-019-09564-4 EDN: NDUWFU
  31. Yamamoto N, Nazaroff WW, Peccia J. Assessing the aerodynamic diameters of taxon-specific fungal bioaerosols by quantitative PCR and next-generation DNA sequencing. J Aerosol Sci. 2014;78:1–10. doi: 10.1016/j.jaerosci.2014.08.007
  32. Maya-Manzano JM, Fernandez-Rodriguez S, Hernandez-Trejo F, et al. Seasonal mediterranean pattern for airborne spores of Alternaria. Aerobiologia. 2012;28(4):515–525. doi: 10.1007/s10453-012-9253-3 EDN: EJETTT
  33. Maya-Manzano JM, Munoz Trivino M, Fernandez-Rodriguez S, et al. Airborne Alternaria conidia in Mediterranean rural environments in SW of Iberian Peninsula and weather parameters that influence their seasonality in relation to climate change. Aerobiologia. 2016;32(1):95–108. doi: 10.1007/s10453-016-9424-8 EDN: XQIESP
  34. Hollins PD, Kettlewell PS, Atkinson MD, et al. Relationships between airborne fungal spore concentration of cladosporium and the summer climate at two sites in Britain. Int J Biometeorol. 2004;48(3):137–141. doi: 10.1007/s00484-003-0188-9 EDN: ETUFKX
  35. Targonski PV, Persky VW, Ramekrishnan V. Effect of environmental molds on risk of death from asthma during the pollen season. J Allergy Clin Immunol. 1995;95(5 Pt 1): 955–961. doi: 10.1016/s0091-6749(95)70095-1
  36. Velez-Pereira AM, De Linares C, Canela MA, Belmonte J. Logistic regression models for predicting daily airborne Alternaria and Cladosporium concentration levels in Catalonia (NE Spain). Int J Biometeorol. 2019;63(12):1541–1553. doi: 10.1007/s00484-019-01767-1 EDN: SJWNXT
  37. Gravesen S. Fungi as a cause of allergic disease. Allergy. 1979;34(3):135–154. doi: 10.1111/j.1398-9995.1979.tb01562.x
  38. Skjoth CA, Damialis A, Belmonte J, et al. Alternaria spores in the air across Europe: abundance, seasonality and relationships with climate, meteorology and local environment. Aerobiologia. 2016;32(1):3–22. doi: 10.1007/s10453-016-9426-6 EDN: XPQBGN
  39. Lam HCY, Anees-Hill S, Satchwell J, et al. Association between ambient temperature and common allergenic pollen and fungal spores: a 52-year analysis in central England, United Kingdom. Sci Total Environ. 2024;906:167607. doi: 10.1016/j.scitotenv.2023.167607 EDN: OBJBDX
  40. Symon FA, Anees-Hill S, Satchwell J, et al. A fungal spore calendar for England: analysis of 13 years of daily concentrations at Leicester, UK. bioRxiv. 2023;12(15)571848. doi: 10.1101/2023.12.15.571848
  41. Ponce-Caballero C, Gamboa-Marrufo M, Lopez-Pacheco M, et al. Seasonal variation of airborne fungal propagules indoor and outdoor of domestic environments in Merida, Mexico. Atmosfera. 2013;26(3):369–377. doi: 10.1016/S0187-6236(13)71083-X
  42. Hansen J, Sato M, Ruedy R, et al. Global temperature change. Proc Natl Acad Sci USA. 2006;103(39):14288–14293. doi: 10.1073/pnas.0606291103
  43. Core Writing Team, Pachauri RK, Allen MR, editors. Climate change 2014: synthesis report. Contribution of working groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: IPCC; 2014. 151 p.
  44. Hansen J., Sato M., Kharecha P. et al. Climate change and trace gases. Phil Trans Roy Soc A. 2007;365:1925–1954. doi: 10.1098/rsta.2007.2052 EDN: MMBLOT
  45. Branco S., Schauster A., Liao H.L., Ruytinx J. Mechanisms of stress tolerance and their effects on the ecology and evolution of mycorrhizal fungi. New Phytol. 2022;235(6):2158–2175. doi: 10.1111/nph.18308 EDN: TWLELF
  46. Grewling L., Fratczak A., Kostecki L. et al. Biological and chemical air pollutants in urban area of Central Europe: co-exposure assessment. Aerosol Air Qual Res. 2019;19(7):1526–1537. doi: 10.4209/aaqr.2018.10.0365
  47. Левитин М.М. Микроорганизмы в условиях глобального изменения климата. В кн.: Левитин М.М. Сельскохозяйственная биология. 2015;50(5):641–647.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Algorithm and design of the conducted research.

Download (522KB)
3. Fig. 2. Scheme of modifications of fungal spores under the influence of meteorological factors (climate change), changes in traditional land use systems, and environmental pollution and urbanization.

Download (650KB)
4. Fig. 3. Concentration of Cladosporium spores in the air of Karakol.

Download (600KB)
5. Fig. 4. Concentration of Alternaria spores in the air of Karakol.

Download (615KB)

Copyright (c) 2025 ABV-press

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».