Immunobiological therapy of psoriasis: current state of the problem

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Psoriasis remains one of the most prominent dermatological diseases and is not limited only to skin manifestations, but often affects internal organs, is burdened by the presence of polymorbid pathology.

Over time, the processes of understanding the mechanisms, diagnosis and treatment of this disease are evolving, and approaches to patient management are being improved. Both external treatment methods and systemic therapy are widely used. Against the background of an actively growing range of drugs used to treat psoriasis, it is quite difficult to make an individual choice for each individual patient, therefore, the most important area of scientific research is to find starting points for personalized therapy selection.

The use of genetically engineered biological drugs to influence certain parts of the immunopathological process is the most advanced line of therapy for psoriasis today. By inhibiting the corresponding proinflammatory cytokines, cellular signaling can be altered and, thus, further pathways of the inflammatory process can be inhibited.

About the authors

Antonina A. Arsenyeva

Samara State Medical University

Author for correspondence.
Email: a.a.arseneva@samsmu.ru
ORCID iD: 0000-0002-7933-3515
SPIN-code: 4320-1196

MD, Cand. Sci. (Medicine), Assistant Professor

Russian Federation, Samara

Natalia B. Migacheva

Samara State Medical University

Email: n.b.migacheva@samsmu.ru
ORCID iD: 0000-0003-0941-9871
SPIN-code: 1313-9021

MD, Dr. Sci. (Medicine), Assistant Professor

Russian Federation, Samara

Artem V. Lyamin

Samara State Medical University

Email: a.v.lyamin@samsmu.ru
ORCID iD: 0000-0002-5905-1895
SPIN-code: 6607-8990

MD, Dr. Sci. (Medicine), Assistant Professor

Russian Federation, Samara

Dmitry P. Kurmaev

Samara State Medical University

Email: geriatry@mail.ru
ORCID iD: 0000-0003-4114-5233
SPIN-code: 2179-5831

Cand. Sci. (Medicine)

Russian Federation, Samara

References

  1. Ghoreschi K, Balato A, Enerbäck C, Sabat R. Therapeutics targeting the IL-23 and IL-17 pathway in psoriasis. Lancet. 2021;397(10275):754–766. doi: 10.1016/S0140-6736(21)00184-7
  2. Raharja A, Mahil SK, Barker JN. Psoriasis: a brief overview. Clin Med (Lond). 2021;21(3):170–173. doi: 10.7861/clinmed.2021-0257
  3. Parisi R, Iskandar IYK, Kontopantelis E, et al. National, regional, and worldwide epidemiology of psoriasis: systematic analysis and modelling study. BMJ. 2020;369:m1590. doi: 10.1136/bmj.m1590
  4. Afonina IS, Van Nuffel E, Beyaert R. Immune responses and therapeutic options in psoriasis. Cell Mol Life Sci. 2021;78(6):2709–2727. doi: 10.1007/s00018-020-03726-1
  5. Liu S, He M, Jiang J, et al. Triggers for the onset and recurrence of psoriasis: a review and update. Cell Commun Signal. 2024;22(1):108. doi: 10.1186/s12964-023-01381-0
  6. Liang X, Ou C, Zhuang J, et al. Interplay between skin microbiota dysbiosis and the host immune system in psoriasis: potential pathogenesis. Front Immunol. 2021;12:764384. doi: 10.3389/fimmu.2021.764384
  7. Vijaya Chandra SH, Srinivas R, Dawson TL Jr, Common JE. Cutaneous Malassezia: commensal, pathogen, or protector? Front Cell Infect Microbiol. 2021;10:614446. doi: 10.3389/fcimb.2020.614446
  8. Dascălu RC, Bărbulescu AL, Stoica LE, et al. Review: a contemporary, multifaced insight into psoriasis pathogenesis. J Pers Med. 2024;14(5):535. doi: 10.3390/jpm14050535
  9. Arora K, Hazarika N, Kumari R, Chawla H. Quality of life in psoriasis: a cross-sectional study from North India. Indian J Dermatol. 2024;69(1):38–43. doi: 10.4103/ijd.ijd_144_23
  10. Tokuyama M, Mabuchi T. New treatment addressing the pathogenesis of psoriasis. Int J Mol Sci. 2020;21(20):7488. doi: 10.3390/ijms21207488
  11. Azuaga AB, Ramírez J, Cañete JD. Psoriatic arthritis: pathogenesis and targeted therapies. Int J Mol Sci. 2023;24(5):4901. doi: 10.3390/ijms24054901
  12. Buerger C. Epidermal mTORC1 signaling contributes to the pathogenesis of psoriasis and could serve as a therapeutic target. Front Immunol. 2018;9:2786. doi: 10.3389/fimmu.2018.02786
  13. Boehncke WH. Systemic inflammation and cardiovascular comorbidity in psoriasis patients: causes and consequences. Front Immunol. 2018;9:579. doi: 10.3389/fimmu.2018.00579
  14. Neurath L, Sticherling M, Schett G, Fagni F. Targeting cytokines in psoriatic arthritis. Cytokine Growth Factor Rev. 2024;78:1–13. doi: 10.1016/j.cytogfr.2024.06.001
  15. Soomro M, Hum R, Barton A, Bowes J. Genetic studies investigating susceptibility to psoriatic arthritis: a narrative review. Clin Ther. 2023;45(9):810–815. doi: 10.1016/j.clinthera.2023.07.003
  16. Boix-Amorós A, Badri MH, Manasson J, et al. Alterations in the cutaneous microbiome of patients with psoriasis and psoriatic arthritis reveal similarities between non-lesional and lesional skin. Ann Rheum Dis. 2023;82(4):507–514. doi: 10.1136/ard-2022-223389
  17. Celoria V, Rosset F, Pala V, et al. The skin microbiome and its role in psoriasis: a review. Psoriasis (Auckl). 2023;13:71–78. doi: 10.2147/PTT.S328439
  18. Lee HJ, Kim M. Challenges and future trends in the treatment of psoriasis. Int J Mol Sci. 2023;24(17):13313. doi: 10.3390/ijms241713313
  19. Rendon A, Schäkel K. Psoriasis pathogenesis and treatment. Int J Mol Sci. 2019;20(6):1475. doi: 10.3390/ijms20061475
  20. Zhukova OV, Kruglova LS, Sharapova EN. Combined ultraviolet therapy and methotrexate in treatment of patients with severe forms of psoriasis. Russian Journal of Clinical Dermatology and Venereology. 2015;14(2):66–73. (In Russ). doi: 10.17116/klinderma201514266-72
  21. Mohd Noor AA, Azlan M, Mohd Redzwan N. Orchestrated cytokines mediated by biologics in psoriasis and its mechanisms of action. Biomedicines. 2022;10(2):498. doi: 10.3390/biomedicines10020498
  22. Hsieh CL, Yu SJ, Lai KL, et al. IFN-γ, IL-17A, IL-4, and IL-13: potential biomarkers for prediction of the effectiveness of biologics in psoriasis patients. Biomedicines. 2024;12(5):1115. doi: 10.3390/biomedicines12051115
  23. Armstrong AW, Puig L, Joshi A, et al. Comparison of biologics and oral treatments for plaque psoriasis: a meta-analysis. JAMA Dermatol. 2020;156(3):258–269. doi: 10.1001/jamadermatol.2019.4029
  24. Kremenevski I, Sander O, Sticherling M, et al. Paradoxical reactions to biologicals in chronic inflammatory systemic diseases. Dtsch Arztebl Int. 2022;119(6):88–95. doi: 10.3238/arztebl.m2022.0067
  25. Scott LJ. Etanercept: a review of its use in autoimmune inflammatory diseases. Drugs. 2014;74(12):1379–1410. doi: 10.1007/s40265-014-0258-9
  26. Rumyantseva OA, Bochkova AG, Urumova MM, et al. Clinical experience with etanercept in the treatment of patients with ankylosing spondylitis. Rheumatology Science and Practice. 2018;56(2):189–195. (In Russ). doi: 10.14412/1995-4484-2018-189-195
  27. Pchelintseva AO, Panasyuk EYu, Ryabitseva OF, et al. Efficacy of etanercept in patients with rheumatoid arthritis (results of the Russian multicenter ETALON study). Rheumatology Science and Practice. 2013;51(6):639–645. (In Russ). doi: 10.14412/1995-4484-2013-639-45
  28. Karateev AE, Lila AM. New etanercept biosimilar — expanding treatment options for immune-mediated inflammatory rheumatic diseases. Modern Rheumatology Journal. 2022;16(6):92–97. (In Russ). doi: 10.14412/1996-7012-2022-6-92-97
  29. Mazurov VI, Lila AM, Korotaeva TV. Erelzi® – biosimilar of etanercept in the treatment of rheumatic diseases and psoriasis (Resolution of the Expert Panel). Modern Rheumatology Journal. 2021;15(4):129–131. (In Russ). doi: 10.14412/1996-7012-2021-4-129-131
  30. Ruiz Garcia V, Burls A, Cabello JB, et al. Certolizumab pegol (CDP870) for rheumatoid arthritis in adults. Cochrane Database Syst Rev. 2017;9(9):CD007649. doi: 10.1002/14651858.CD007649.pub4
  31. Esposito M, Carubbi F, Giunta A, et al. Certolizumab pegol for the treatment of psoriatic arthritis and plaque psoriasis. Expert Rev Clin Immunol. 2020;16(2):119–128. doi: 10.1080/1744666X.2020.1713754
  32. Padda IS, Bhatt R, Parmar M. Apremilast. [Updated 2023 Jul 10]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. Available from: https://www.ncbi.nlm.nih.gov/books/NBK572078
  33. Loginova EYu, Korsakova YuL, Koltakova AD, et al. The efficacy and safety of apremilast in patients with psoriatic arthritis concurrent with comorbidity in clinical practice. Rheumatology Science and Practice. 2019;57(3):299–306. (In Russ). doi: 10.14412/1995-4484-2019-299-306
  34. Krueger JG, Wharton KA Jr, Schlitt T, et al. IL-17A inhibition by secukinumab induces early clinical, histopathologic, and molecular resolution of psoriasis. J Allergy Clin Immunol. 2019;144(3):750–763. doi: 10.1016/j.jaci.2019.04.029
  35. Iznardo H, Puig L. The safety of brodalumab for the treatment of psoriasis. Expert Opin Drug Saf. 2020;19(4):365–372. doi: 10.1080/14740338.2020.1730326
  36. Gordon KB, Foley P, Krueger JG, et al. Bimekizumab efficacy and safety in moderate to severe plaque psoriasis (BE READY): a multicentre, double-blind, placebo-controlled, randomised withdrawal phase 3 trial. Lancet. 2021;397(10273):475–486. doi: 10.1016/S0140-6736(21)00126-4
  37. Korotaeva TV, Mazurov VI, Lila AM, et al. Netakimab for the treatment of psoriatic arthritis: 3-year results of the phase III BCD-085-8/PATERA study. Modern Rheumatology Journal. 2024;18(4):33–42. (In Russ). doi: 10.14412/1996-7012-2024-4-33-42
  38. Dubinina TV, Gaydukova IZ, Sableva NА, et al. Comparative pharmacoeconomic effectiveness of interleukin-17 inhibitors for the treatment of ankylosing spondylitis. Rheumatology Science and Practice. 2022;60(6):594–601. (In Russ). doi: 10.47360/1995-4484-2022-594-601
  39. Tarasenko GN, Patronov IV. Netakimab in the treatment of psoriatic erythroderma. Medical Council. 2024;(14):78–81. (In Russ). doi: 10.21518/ms2024-335
  40. Kurdina MI, Kolenko NG. Therapy of netakimab in nail psoriasis. Medical Council. 2024;(2):144–152. (In Russ). doi: 10.21518/ms2024-054
  41. Svechnikova EV, Zhufina SE, Morzhanaeva MA. Clinical case: switching from basic therapy with methotrexate to therapy with netakimab, an IL-17 inhibitor, in a patient with severe psoriasis. Medical Council. 2023;(2):69–74. (In Russ). doi: 10.21518/ms2023-012
  42. Yang K, Oak ASW, Elewski BE. Use of IL-23 inhibitors for the treatment of plaque psoriasis and psoriatic arthritis: a comprehensive review. Am J Clin Dermatol. 2021;22(2):173–192. doi: 10.1007/s40257-020-00578-0
  43. Banaszczyk K. Tildrakizumab in the treatment of psoriasis – literature review. Reumatologia. 2019;57(4):234–238. doi: 10.5114/reum.2019.87620
  44. Papp K, Warren RB, Green L, et al. Safety and efficacy of mirikizumab versus secukinumab and placebo in the treatment of moderate-to-severe plaque psoriasis (OASIS-2): a phase 3, multicentre, randomised, double-blind study. Lancet Rheumatol. 2023;5(9):e542–e552. doi: 10.1016/S2665-9913(23)00120-0
  45. Shafieva IA, Bulgakova SV, Kurmaev DP, Treneva EV. Use of tofacitinib in psoriatic arthritis (literature review). Medical Council. 2024;18(12):114–122. (In Russ). doi: 10.21518/ms2024-230
  46. Chandran V, Malkov VA, Ito KL, et al. Pharmacodynamic effects of filgotinib treatment driving clinical improvement in patients with active psoriatic arthritis enrolled in the EQUATOR trial. RMD Open. 2023;9(4):e003550. doi: 10.1136/rmdopen-2023-003550
  47. Zhang J, Qi F, Dong J, et al. Application of baricitinib in dermatology. J Inflamm Res. 2022;15:1935–1941. doi: 10.2147/JIR.S356316
  48. Ciechanowicz P, Rakowska A, Sikora M, Rudnicka L. JAK-inhibitors in dermatology: current evidence and future applications. J Dermatolog Treat. 2019;30(7):648–658. doi: 10.1080/09546634.2018.1546043
  49. Mease P, Helliwell P, Silwinska-Stanczyk P, et al. Efficacy and safety of the TYK2/JAK1 inhibitor brepocitinib for active psoriatic arthritis: a phase IIb randomized controlled trial. Arthritis Rheumatol. 2023;75(8):1370–1380. doi: 10.1002/art.42519
  50. Strober B, Thaçi D, Sofen H, et al. Deucravacitinib versus placebo and apremilast in moderate to severe plaque psoriasis: efficacy and safety results from the 52-week, randomized, double-blinded, phase 3 program for evaluation of TYK2 inhibitor psoriasis second trial. J Am Acad Dermatol. 2023;88(1):40–51. doi: 10.1016/j.jaad.2022.08.061
  51. Imura C, Ueyama A, Sasaki Y, et al. A novel RORγt inhibitor is a potential therapeutic agent for the topical treatment of psoriasis with low risk of thymic aberrations. J Dermatol Sci. 2019;93(3):176–185. doi: 10.1016/j.jdermsci.2019.03.002
  52. Berstein G, Zhang Y, Berger Z, et al. A phase I, randomized, double-blind study to assess the safety, tolerability and efficacy of the topical RORC2 inverse agonist PF-06763809 in participants with mild-to-moderate plaque psoriasis. Clin Exp Dermatol. 2021;46(1):122–129. doi: 10.1111/ced.14412
  53. Mohamed MF, Qian Y, D’Cunha R, et al. Pharmacokinetics, safety, and tolerability of cedirogant in healthy Japanese and Chinese adults. Clin Pharmacol Drug Dev. 2024;13(7):801–809. doi: 10.1002/cpdd.1386
  54. Tyring S, Moore A, Morita A, et al. Cedirogant in adults with psoriasis: a phase II, randomized, placebo-controlled clinical trial. Clin Exp Dermatol. 2024;49(11):1347–1355. doi: 10.1093/ced/llae152
  55. Zanin-Zhorov A, Weiss JM, Trzeciak A, et al. Cutting edge: selective oral ROCK2 inhibitor reduces clinical scores in patients with psoriasis vulgaris and normalizes skin pathology via concurrent regulation of IL-17 and IL-10. J Immunol. 2017;198(10):3809–3814. doi: 10.4049/jimmunol.1602142
  56. Yoon JH, Nguyen TT, Duong VA, et al. Determination of KD025 (SLx-2119), a selective ROCK2 inhibitor, in rat plasma by high-performance liquid chromatography-tandem mass spectrometry and its pharmacokinetic application. Molecules. 2020;25(6):1369. doi: 10.3390/molecules25061369
  57. Ali F, Ilyas A. Belumosudil with ROCK-2 inhibition: chemical and therapeutic development to FDA approval for the treatment of chronic graft-versus-host disease. Curr Res Transl Med. 2022;70(3):103343. doi: 10.1016/j.retram.2022.103343
  58. Huang Y, Mao CR, Lou Y, et al. Design, synthesis, and biological evaluation of an orally bioavailable, potent, and selective ROCK2 inhibitor for psoriasis treatment. J Med Chem. 2023;66(22):15205–15229. doi: 10.1021/acs.jmedchem.3c01297
  59. Schett G, Rahman P, Ritchlin C, et al. Psoriatic arthritis from a mechanistic perspective. Nat Rev Rheumatol. 2022;18(6):311–325. doi: 10.1038/s41584-022-00776-6
  60. Lee BW, Moon SJ. Inflammatory cytokines in psoriatic arthritis: understanding pathogenesis and implications for treatment. Int J Mol Sci. 2023;24(14):11662. doi: 10.3390/ijms241411662
  61. Bellinato F, Maurelli M, Geat D, et al. Managing the patient with psoriasis and metabolic comorbidities. Am J Clin Dermatol. 2024;25(4):527–540. doi: 10.1007/s40257-024-00857-0
  62. Nast A, Smith C, Spuls PI, et al. EuroGuiDerm Guideline on the systemic treatment of psoriasis vulgaris – Part 1: treatment and monitoring recommendations. J Eur Acad Dermatol Venereol. 2020;34(11):2461–2498. doi: 10.1111/jdv.16915
  63. Reid C, Griffiths CEM. Psoriasis and treatment: past, present and future aspects. Acta Derm Venereol. 2020;100(3):adv00032. doi: 10.2340/00015555-3386

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Pharmarus Print Media

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».