Поиск предиктивных биомаркеров эффективности аллергенспецифической иммунотерапии на основе современных представлений о механизмах её действия

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Аллергенспецифическая иммунотерапия является основным патогенетически обоснованным методом лечения аллергических заболеваний, действие которого не только приводит к уменьшению выраженности клинических симптомов, но и оказывает болезнь-модифицирующий эффект, препятствуя прогрессированию заболевания, развитию бронхиальной астмы и расширению спектра сенсибилизации.

Толерантность, формируемая в процессе аллергенспецифической иммунотерапии, опосредована сложным взаимодействием между различными клетками врождённого и адаптивного иммунитета. Несмотря на то, что к настоящему времени описаны основные механизмы действия аллергенспецифической иммунотерапии, с каждым годом представление об этих процессах становится всё более детализированным не только на клеточном, но и молекулярном и эпигенетическом уровнях. В свою очередь, глубокое понимание механизмов, лежащих в основе формирования и сохранения толерантности к аллергенам при проведении аллергенспецифической иммунотерапии, поможет в выявлении предиктивных биомаркеров эффективности, использование которых могло бы оптимизировать отбор пациентов для проведения аллергенспецифической иммунотерапии, предсказывая ответ пациента на терапию.

В настоящем обзоре изложены актуальные представления о механизмах действия аллергенспецифической иммунотерапии на различные звенья аллергического процесса; описаны предполагаемые предиктивные биомаркеры эффективности данного терапевтического метода с учётом перспективных направлений исследований в этой области.

Об авторах

Дарья Олеговна Тимошенко

Государственный научный центр «Институт иммунологии»

Автор, ответственный за переписку.
Email: d.o.timoshenko@gmail.com
ORCID iD: 0000-0002-7585-1390
SPIN-код: 2714-0906

аспирант 

Россия, 115522, Москва, Каширское шоссе, д. 24

Ксения Сергеевна Павлова

Государственный научный центр «Институт иммунологии»

Email: ksenimedical@gmail.com
ORCID iD: 0000-0002-4164-4094
SPIN-код: 7593-0838
Scopus Author ID: 7004658159
ResearcherId: P-9255-2017

канд. мед. наук

Россия, 115522, Москва, Каширское шоссе, д. 24

Оксана Михайловна Курбачева

Государственный научный центр «Институт иммунологии»; Московский государственный медико-стоматологический университет имени А.И. Евдокимова

Email: kurbacheva@gmail.com
ORCID iD: 0000-0003-3250-0694
SPIN-код: 5698-6436

д-р мед. наук, профессор

Россия, 115522, Москва, Каширское шоссе, д. 24; Москва

Список литературы

  1. Федеральные клинические рекомендации по проведению аллергенспецифической иммунотерапии. Российская ассоциация аллергологов и клинических иммунологов, 2013. Режим доступа: https://raaci.ru/dat/pdf/7asit.pdf. Дата обращения: 15.02.2023.
  2. Muraro A., Roberts G. Translating knowledge into clinical practice Allergen Immunotherapy Guidelines Part 1: Systematic reviews. European Academy of Allergy and Clinical Immunology (EAACI), 2017. 192 р.
  3. Гущин И.С., Курбачева О.М. Аллергия и аллергенспецифическая иммунотерапия. Москва: Фармус Принт Медиа, 2010.
  4. Shamji M., Kappen J. H., Akdis M., et al. Biomarkers for monitoring clinical efficacy of allergen immunotherapy for allergic rhinoconjunctivitis and allergic asthma: An EAACI Position Paper // Allergy. 2017. Vol. 72, N 8. P. 1156–1173. doi: 10.1111/ALL.13138
  5. Sözener Z.C., Mungan D., Cevhertas L. Tolerance mechanisms in allergen immunotherapy // Curr Opin Allergy Clin Immunol. 2020. Vol. 20, N 6. P. 591–601. doi: 10.1097/ACI.0000000000000693
  6. Kanagaratham C., Ansari Y., Lewis O., et al. IgE and IgG antibodies as regulators of mast cell and basophil functions in food allergy // Front Immunol. 2020. N 11. P. 603050. doi: 10.3389/fimmu.2020.603050
  7. Schmid J., Würtzen P., Siddhuraj P., et al. Basophil sensitivity reflects long-term clinical outcome of subcutaneous immunotherapy in grass pollen-allergic patients // Allergy. 2021. Vol. 76, N 5. P. 1528–1538. doi: 10.1111/ALL.14264
  8. Eljaszewicz A., Ruchti F., Radzikowska U., et al. Trained immunity and tolerance in innate lymphoid cells, monocytes, and dendritic cells during allergen-specific immunotherapy // J Allergy Clin Immunol. 2021. Vol. 147, N 5. P. 1865–1877. doi: 10.1016/J.JACI.2020.08.042
  9. Wen H., Qu L., Zhang Y., et al. A dendritic cells-targeting nano-vaccine by coupling polylactic-co-glycolic acid-encapsulated allergen with mannan induces regulatory T cells // Int Arch Allergy Immunol. 2021. Vol. 182, N 9. P. 777–787. doi: 10.1159/000512872
  10. Sirvent S., Soria I., Cirauqui C., et al. Novel vaccines targeting dendritic cells by coupling allergoids to nonoxidized mannan enhance allergen uptake and induce functional regulatory T cells through programmed death ligand 1 // J Allergy Clin Immunol. 2016. Vol. 138, N 2. P. 558–567.e11. doi: 10.1016/J.JACI.2016.02.029
  11. Soria I., López-Relaño J., Viñuela M., et al. Oral myeloid cells uptake allergoids coupled to mannan driving Th1/Treg responses upon sublingual delivery in mice // Allergy. 2018. Vol. 73, N 4. P. 875–884. doi: 10.1111/ALL.13396
  12. Benito-Villalvilla C., Pérez-Diego M., Angelina A., et al. Allergoid-mannan conjugates imprint tolerogenic features in human macrophages // Allergy. 2022. Vol. 77, N 1. P. 320–323. doi: 10.1016/J.JACI.2021.06.012
  13. Zimmer A., Bouley J., Le Mignon M., et al. A regulatory dendritic cell signature correlates with the clinical efficacy of allergen-specific sublingual immunotherapy // J Allergy Clin Immunol. 2012. Vol. 129, N 4. P. 1020–1030. doi: 10.1016/J.JACI.2012.02.014
  14. Starchenka S., Heath M., Lineberry A., et al. Transcriptome analysis and safety profile of the early-phase clinical response to an adjuvanted grass allergoid immunotherapy // World Allergy Organ. 2019. Vol. 12, N 11. P. 100087. doi: 10.1016/J.WAOJOU.2019.100087
  15. López J., Imam M., Satitsuksanoa P., et al. Mechanisms and biomarkers of successful allergen-specific immunotherapy // Asia Pac Allergy. 2022. Vol. 12, N 4. P. e45. doi: 10.5415/apallergy.2022.12.e45
  16. Wambre E., Delong J., James E., et al. Differentiation stage determines pathologic and protective allergen-specific CD4+ T-cell outcomes during specific immunotherapy // J Allergy Clin Immunol. 2012. Vol. 129, N 2. P. 544–551,551.e1-7. doi: 10.1016/J.JACI.2011.08.034
  17. Wambre E., Delong J., James E., et al. Specific immunotherapy modifies allergen-specific CD4(+) T-cell responses in an epitope-dependent manner // J Allergy Clin Immunol. 2014. Vol. 133, N 3. P. 872–879.e7. doi: 10.1016/J.JACI.2013.10.054
  18. Wambre E. Effect of allergen-specific immunotherapy on CD4+ T cells // Curr Opin Allergy Clin Immunol. 2015. Vol. 15, N 6. P. 581–587. doi: 10.1097/ACI.0000000000000216
  19. Dolch A., Kunz S., Dorn B., et al. IL-10 signaling in dendritic cells is required for tolerance induction in a murine model of allergic airway inflammation // Eur J Immunol. 2019. Vol. 49, N 2. P. 302–312. doi: 10.1002/EJI.201847883
  20. Scadding G., Calderon M., Shamji M., et al. Effect of 2 years of treatment with sublingual grass pollen immunotherapy on nasal response to allergen challenge at 3 years among patients with moderate to severe seasonal allergic rhinitis: The GRASS randomized clinical trial // JAMA. 2017. Vol. 317, N 6. P. 615–625. doi: 10.1001/JAMA.2016.21040
  21. Renand A., Shamji M., Harris K., et al. Synchronous immune alterations mirror clinical response during allergen immunotherapy // J Allergy Clin Immunol. 2018. Vol. 141, N 5. P. 1750-1760.e1. doi: 10.1016/J.JACI.2017.09.041
  22. Shamji M.H., Durham S.R. Mechanisms of allergen immunotherapy for inhaled allergens and predictive biomarkers // J Allergy Clin Immunol. 2017. Vol. 140, N 6. P. 1485–1498. doi: 10.1016/j.jaci.2017.10.010
  23. Zemmour D., Zilionis R., Kiner E., et al. Single-cell gene expression reveals a landscape of regulatory T cell phenotypes shaped by the TCR // Nat Immunol. 2018. Vol. 19, N 3. P. 291–301. doi: 10.1038/S41590-018-0051-0
  24. Scadding G., Shamji M., Jacobson M., et al. Sublingual grass pollen immunotherapy is associated with increases in sublingual Foxp3-expressing cells and elevated allergen-specific immunoglobulin G4, immunoglobulin A and serum inhibitory activity for immunoglobulin E-facilitated allergen binding to B cells // Clin Exp Allergy. 2010. Vol. 40, N 4. P. 598–606. doi: 10.1111/J.1365-2222.2010.03462.X
  25. Van de Veen W., Akdis M. Tolerance mechanisms of allergen immunotherapy // Allergy. 2020. Vol. 75, N 5. P. 1017–1018. doi: 10.1111/ALL.14126
  26. Boonpiyathad T., van de Veen W., Wirz O., et al. Role of Der p 1-specific B cells in immune tolerance during 2 years of house dust mite-specific immunotherapy // J Allergy Clin Immunol. 2019. Vol. 143, N 3. P. 1077–1086.e10. doi: 10.1016/J.JACI.2018.10.061
  27. Wang C.M., Chang C.B., Wu S.F. Differential DNA methylation in allergen-specific immunotherapy of asthma // Cell Mol Immunol. 2020. Vol. 17, N 9. P. 1017–1018. doi: 10.1038/s41423-020-0476-x
  28. Тимошенко Д.О., Кофиади И.А., Гудима Г.О., Курбачева О.М. Эпигенетика бронхиальной астмы // Иммунология. 2021. Т. 42. № 2. С. 93–101. doi: 10.33029/0206-4952-2021-42-2-93-101
  29. Swamy R., Reshamwala N., Hunter T., et al. Epigenetic modifications and improved regulatory T-cell function in subjects undergoing dual sublingual immunotherapy // J Allergy Clin Immunol. 2012. Vol. 130, N 1. P. 215–224.e7. doi: 10.1016/j.jaci.2012.04.021
  30. Syed A., Garcia M., Lyu S., et al. Peanut oral immunotherapy results in increased antigen-induced regulatory T-cell function and hypomethylation of forkhead box protein 3 (FOXP3) // J Allergy Clin Immunol. 2014. Vol. 133, N 2. P. 500–510. doi: 10.1016/J.JACI.2013.12.1037
  31. Wang C., Chang C., Chan M., et al. Dust mite allergen-specific immunotherapy increases IL4 DNA methylation and induces Der p-specific T cell tolerance in children with allergic asthma // Cell Mol Immunol. 2018. Vol. 15, N 11. P. 963–972. doi: 10.1038/CMI.2017.26
  32. Shamji M., Layhadi J., Achkova D., et al. Role of IL-35 in sublingual allergen immunotherapy // J Allergy Clin Immunol. 2019. Vol. 143, N 3. P. 1131–1142.e4. doi: 10.1016/J.JACI.2018.06.041
  33. Rigas D., Lewis G., Aron J., et al. Type 2 innate lymphoid cell suppression by regulatory T cells attenuates airway hyperreactivity and requires inducible T-cell costimulator-inducible T-cell costimulator ligand interaction // J Allergy Clin Immunol. 2017. Vol. 139, N 5. P. 1468–1477.e2. doi: 10.1016/J.JACI.2016.08.034
  34. Shamji M., Larson D., Eifan A., et al. Differential induction of allergen-specific IgA responses following timothy grass subcutaneous and sublingual immunotherapy // J Allergy Clin Immunol. 2021. Vol. 148, N 4. P. 1061–1071.e11. doi: 10.1016/j.jaci.2021.03.030
  35. Shamji M., Valenta R., Jardetzky T., et al. The role of allergen-specific IgE, IgG and IgA in allergic disease // Allergy. 2021. Vol. 76, N 12. P. 3627–3641. doi: 10.1111/ALL.14908
  36. Van de Veen W., Akdis M. Role of IgG4 in IgE-mediated allergic responses // J Allergy Clin Immunol. 2016. Vol. 138, N 5. P. 1434–1435. doi: 10.1016/J.JACI.2016.07.022
  37. Orengo J., Radin A., Kamat V., et al. Treating cat allergy with monoclonal IgG antibodies that bind allergen and prevent IgE engagement // Nat Commun. 2018. Vol. 9, N 1. P. 1421. doi: 10.1038/S41467-018-03636-8
  38. Kolfschoten M., Schuurman J., Losen M., et al. Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange // Science. 2007. Vol. 317, N 5844. P. 1554–1557. doi: 10.1126/SCIENCE.1144603
  39. Heeringa J., McKenzie C., Varese N., et al. Induction of IgG2 and IgG4 B-cell memory following sublingual immunotherapy for ryegrass pollen allergy // Allergy. 2020. Vol. 75, N 5. P. 1121–1132. doi: 10.1111/ALL.14073
  40. Boonpiyathad T., Pradubpongsa P., Mitthamsiri W., et al. Allergen-specific immunotherapy boosts allergen-specific IgD production in house dust mite-sensitized asthmatic patients // Allergy. 2020. Vol. 75, N 6. P. 1457–1460. doi: 10.1111/ALL.14133
  41. Satitsuksanoa P., Daanje M., Akdis M., et al. Biology and dynamics of B cells in the context of IgE-mediated food allergy // Allergy. 2021. Vol. 76, N 6. P. 1707–1717. doi: 10.1111/ALL.14684
  42. Jansen K., Cevhertas L., Ma S., et al. Regulatory B cells, A to Z // Allergy. 2021. Vol. 76, N 9. P. 2699–2715. doi: 10.1111/ALL.14763
  43. Ma S., Satitsuksanoa P., Jansen K., et al. B regulatory cells in allergy // Immunol Rev. 2021. Vol. 299, N 1. P. 10–30. doi: 10.1111/IMR.12937
  44. Van de Veen W., Stanic B., Yaman G., et al. IgG4 production is confined to human IL-10-producing regulatory B cells that suppress antigen-specific immune responses // J Allergy Clin Immunol. 2013. Vol. 131, N 4. P. 1204–1212. doi: 10.1016/J.JACI.2013.01.014
  45. Boonpiyathad T., Meyer N., Moniuszko M., et al. High-dose bee venom exposure induces similar tolerogenic B-cell responses in allergic patients and healthy beekeepers // Allergy. 2017. Vol. 72, N 3. P. 407–415. doi: 10.1111/ALL.12966
  46. Wang S., Xia P., Chen Y., et al. Regulatory innate lymphoid cells control innate intestinal inflammation // Cell. 2017. Vol. 171, N 1. P. 201–216.e18. doi: 10.1016/J.CELL.2017.07.027
  47. Morita H., Kubo T., Rückert B., et al. Induction of human regulatory innate lymphoid cells from group 2 innate lymphoid cells by retinoic acid // J Allergy Clin Immunol. 2019. Vol. 143, N 6. P. 2190–2201.e9. doi: 10.1016/J.JACI.2018.12.1018
  48. Golebski K., Layhadi J., Sahiner U., et al. Induction of IL-10-producing type 2 innate lymphoid cells by allergen immunotherapy is associated with clinical response // Immunity. 2021. Vol. 54, N 2. P. 291–307.e7. doi: 10.1016/J.IMMUNI.2020.12.013
  49. Федеральные клинические рекомендации по диагностике и лечению аллергического ринита. 2020. Режим доступа: https://cr.minzdrav.gov.ru/recomend/261_1. Дата обращения: 15.02.2023.
  50. Федеральные клинические рекомендации по диагностике и лечению бронхиальной астмы. 2021. Режим доступа: https://cr.minzdrav.gov.ru/recomend/359_2. Дата обращения: 15.02.2023.
  51. Shamji M.H., Ljørring C., Würtzen P.A. Predictive biomarkers of clinical efficacy of allergen-specific immunotherapy: How to proceed // Immunotherapy. 2013. Vol. 5, N 3. P. 203–206. doi: 10.2217/imt.13.6
  52. Muraro A., Roberts G. Translating knowledge into clinical practice Allergen Immunotherapy Guidelines Part 2: Systematic reviews. European Academy of Allergy and Clinical Immunology (EAACI), 2017. 190 р.
  53. Тимошенко Д.О., Павлова К.С., Курбачёва О.М., Ильина Н.И. Место молекулярной аллергодиагностики при проведении аллергенспецифической иммунотерапии // Российский аллергологический журнал. 2022. Т. 19, № 3. С. 336–345. doi: 10.36691/RJA1572
  54. Shamji M., Ljørring C., Francis J., et al. Functional rather than immunoreactive levels of IgG4 correlate closely with clinical response to grass pollen immunotherapy // Allergy. 2012. Vol. 67, N 2. P. 217–226. doi: 10.1111/J.1398-9995.2011.02745.X
  55. Dahl R., Kapp A., Colombo G., et al. Sublingual grass allergen tablet immunotherapy provides sustained clinical benefit with progressive immunologic changes over 2 years // J Allergy Clin Immunol. 2008. Vol. 121, N 2. P. 512–518.e2. doi: 10.1016/J.JACI.2007.10.039
  56. Gleich G., Zimmermann E., Henderson L., et al. Effect of immunotherapy on immunoglobulin E and immunoglobulin G antibodies to ragweed antigens: A six-year prospective study // J Allergy Clin Immunol. 1982. Vol. 70, N 4. P. 261–271. doi: 10.1016/0091-6749(82)90062-8
  57. Pilette C., Nouri-Aria K., Jacobson M., et al. Grass pollen immunotherapy induces an allergen-specific IgA2 antibody response associated with mucosal TGF-β expression // J Immunol. 2007. Vol. 178, N 7. P. 4658–4666. doi: 10.4049/JIMMUNOL.178.7.4658
  58. Nouri-Aria K., Wachholz P., Francis J., et al. Grass pollen immunotherapy induces mucosal and peripheral IL-10 responses and blocking IgG activity // J Immunol. 2004. Vol. 172, N 5. P. 3252–3259. doi: 10.4049/JIMMUNOL.172.5.3252
  59. Di Lorenzo G., Mansueto P., Pacor M., et al. Evaluation of serum s-IgE/total IgE ratio in predicting clinical response to allergen-specific immunotherapy // J Allergy Clin Immunol. 2009. Vol. 123, N 5. P. 1103–1110,1110.e1-4. doi: 10.1016/J.JACI.2009.02.012
  60. Fujimura T., Yonekura S., Horiguchi S., et al. Increase of regulatory T cells and the ratio of specific IgE to total IgE are candidates for response monitoring or prognostic biomarkers in 2-year sublingual immunotherapy (SLIT) for Japanese cedar pollinosis // Clini Immunol. 2011. Vol. 139, N 1. P. 65–74. doi: 10.1016/J.CLIM.2010.12.022
  61. Würtzen P., Lund G., Lund K., et al. A double-blind placebo-controlled birch allergy vaccination study II: Correlation between inhibition of IgE binding, histamine release and facilitated allergen presentation // Clin Exp Allergy. 2008. Vol. 38, N 8. P. 1290–1301. doi: 10.1111/J.1365-2222.2008.03020.X
  62. Bohle B., Kinaciyan T., Gerstmayr M., et al. Sublingual immunotherapy induces IL-10-producing T regulatory cells, allergen-specific T-cell tolerance, and immune deviation // J Allergy Clin Immunol. 2007. Vol. 120, N 3. P. 707–713. doi: 10.1016/J.JACI.2007.06.013
  63. Ciepiela O., Zawadzka-Krajewska A., Kotuła I., et al. Sublingual immunotherapy for asthma: Affects T-cells but does not impact basophil activation // Pediatric Allergy Immunol Pulmonol. 2014. Vol. 27, N 1. P. 17–23. doi: 10.1089/PED.2014.0328
  64. Schulten V., Tripple V., Seumois G., et al. Allergen-specific immunotherapy modulates the balance of circulating Tfh and Tfr cells // J Allergy Clin Immunol. 2018. Vol. 141, N 2. P. 775–777.e6. doi: 10.1016/j.jaci.2017.04.032
  65. Atkinson A., Colburn W., DeGruttola V., et al. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework // Clin Pharmacol Ther. 2001. Vol. 69, N 3. P. 89–95. doi: 10.1067/MCP.2001.113989
  66. Shamji M., Wilcock L., Wachholz P., et al. The IgE-facilitated allergen binding (FAB) assay: Validation of a novel flow-cytometric based method for the detection of inhibitory antibody responses // J Immunol Methods. 2006. Vol. 317, N 1-2. P. 71–79. doi: 10.1016/J.JIM.2006.09.004
  67. Shamji M., Francis J., Würtzen P., et al. Cell-free detection of allergen-IgE cross-linking with immobilized phase CD23: Inhibition by blocking antibody responses after immunotherapy // J Allergy Clin Immunol. 2013. Vol. 132, N 4. P. 1003–1005.e1-4. doi: 10.1016/J.JACI.2013.05.025
  68. Liu J., Hu M., Tao X., et al. Salivary IgG4 levels contribute to assessing the efficacy of dermatophagoides pteronyssinus subcutaneous immunotherapy in children with asthma or allergic rhinitis // J Clin Med. 2023. Vol. 12, N 4. P. 1665. doi: 10.3390/JCM12041665
  69. Knol E., Mul F., Jansen H., et al. Monitoring human basophil activation via CD63 monoclonal antibody 435 // J Allergy Clin Immunol. 1991. Vol. 88, N 3. P. 328–338. doi: 10.1016/0091-6749(91)90094-5
  70. Ebo D., Bridts C., Mertens C., et al. Analyzing histamine release by flow cytometry (HistaFlow): A novel instrument to study the degranulation patterns of basophils // J Immunol Methods. 2012. Vol. 375, N 1-2. P. 30–38. doi: 10.1016/j.jim.2011.09.003
  71. Nullens S., Sabato V., Faber M., et al. Basophilic histamine content and release during venom immunotherapy: Insights by flow cytometry // Cytometry B Clin Cytom. 2013. Vol. 84B, N 3. P. 173–178. doi: 10.1002/CYTO.B.21084
  72. Jutel M., Akdis M., Budak F., et al. IL-10 and TGF-beta cooperate in the regulatory T cell response to mucosal allergens in normal immunity and specific immunotherapy // Eur J Immunol. 2003. Vol. 33, N 5. P. 1205–1214. doi: 10.1002/EJI.200322919
  73. Faith A., Richards D., Verhoef A., et al. Impaired secretion of interleukin-4 and interleukin-13 by allergen-specific T cells correlates with defective nuclear expression of NF-AT2 and jun B: Relevance to immunotherapy // Clin Exp Allergy. 2003. Vol. 33, N 9. P. 1209–1215. doi: 10.1046/J.1365-2222.2003.01748.X
  74. Ebner C., Siemann U., Bohle B., et al. Immunological changes during specific immunotherapy of grass pollen allergy: reduced lymphoproliferative responses to allergen and shift from TH2 to TH1 in T-cell clones specific for Phl p 1, a major grass pollen allergen // Clin Exp Allergy. 1997. Vol. 27, N 9. P. 1007–1015. doi: 10.1111/J.1365-2222.1997.TB01252.X
  75. Fanta C., Bohle B., Hirt W., et al. Systemic immunological changes induced by administration of grass pollen allergens via the oral mucosa during sublingual immunotherapy // Int Arch Allergy Immunol. 1999. Vol. 120, N 3. P. 218–224. doi: 10.1159/000024270
  76. Cosmi L., Santarlasci V., Angeli R., et al. Sublingual immunotherapy with Dermatophagoides monomeric allergoid down-regulates allergen-specific immunoglobulin E and increases both interferon-gamma- and interleukin-10-production // Clin Exp Allergy. 2006. Vol. 36, N 3. P. 261–272. doi: 10.1111/J.1365-2222.2006.02429.X
  77. Wachholz P., Nouri-Aria K., Wilson D., et al. Grass pollen immunotherapy for hayfever is associated with increases in local nasal but not peripheral Th1:Th2 cytokine ratios // Immunology. 2002. Vol. 105, N 1. P. 56–62. doi: 10.1046/J.1365-2567.2002.01338.X
  78. Francis J.N., Till S.J., Durham S.R. Induction of IL-10+CD4+CD25+T cells by grass pollen immunotherapy // J Allergy Clin Immunol. 2003. Vol. 111, N 6. P. 1255–1261. doi: 10.1067/mai.2003.1570
  79. Plewako H., Holmberg K., Oancea I., et al. A follow-up study of immunotherapy-treated birch-allergic patients: effect on the expression of chemokines in the nasal mucosa // Clin Exp Allergy. 2008. Vol. 38, N 7. P. 1124–1131. doi: 10.1111/J.1365-2222.2008.03005.X
  80. Makino Y., Noguchi E., Takahashi N., et al. Apolipoprotein A-IV is a candidate target molecule for the treatment of seasonal allergic rhinitis // J Allergy Clin Immunol. 2010. Vol. 126, N 6. P. 1163–1169.e5. doi: 10.1016/J.JACI.2010.06.031
  81. Li H., Xu E., He M. Cytokine responses to specific immunotherapy in house dust mite-induced allergic rhinitis patients // Inflammation. 2015. Vol. 38, N 6. P. 2216–2223. doi: 10.1007/S10753-015-0204-3
  82. Sakashita M., Yamada T., Imoto Y., et al. Long-term sublingual immunotherapy for Japanese cedar pollinosis and the levels of IL-17A and complement components 3a and 5a // Cytokine. 2015. Vol. 75, N 1. P. 181–185. doi: 10.1016/J.CYTO.2015.03.019
  83. Scadding G., Eifan A., Lao-Araya M., et al. Effect of grass pollen immunotherapy on clinical and local immune response to nasal allergen challenge // Allergy. 2015. Vol. 70, N 6. P. 689–696. doi: 10.1111/ALL.12608
  84. Ciprandi G., De Amici M., Murdaca G., et al. Adipokines and sublingual immunotherapy: Preliminary report // Hum Immunol. 2009. Vol. 70, N 1. P. 73–78. doi: 10.1016/J.HUMIMM.2008.10.001
  85. Kirmaz C., Kirgiz O., Bayrak P., et al. Effects of allergen-specific immunotherapy on functions of helper and regulatory T cells in patients with seasonal allergic rhinitis // Eur Cytokine Netw. 2011. Vol. 22, N 1. P. 15–23. doi: 10.1684/ECN.2011.0277
  86. Xie S., Jiang S., Zhang H., et al. Prediction of sublingual immunotherapy efficacy in allergic rhinitis by serum metabolomics analysis // Int Immunopharmacol. 2021. N 90. P. 107211. doi: 10.1016/J.INTIMP.2020.107211
  87. Zheng P., Yan G., Zhang Y., et al. Metabolomics reveals process of allergic rhinitis patients with single- and double-species mite subcutaneous immunotherapy // Metabolites. 2021. Vol. 11, N 9. P. 613. doi: 10.3390/METABO11090613
  88. Shamji M., Layhadi J., Perera-web A., et al. IL-35+ Regulatory T Cells suppress grass pollen-driven Th2 responses and are induced following grass pollen-specific sublingual immunotherapy // J Allergy Clin Immunol. 2013. Vol. 131, N 2. P. AB146. doi: 10.1016/j.jaci.2012.12.1182
  89. Gueguen C., Bouley J., Moussu H., et al. Changes in markers associated with dendritic cells driving the differentiation of either TH2 cells or regulatory T cells correlate with clinical benefit during allergen immunotherapy // J Allergy Clin Immunol. 2016. Vol. 137, N 2. P. 545–558. doi: 10.1016/j.jaci.2015.09.015
  90. O’Mahony L., Akdis C.A., Eiwegger T. Innate mechanisms can predict successful allergy immunotherapy // J Allergy Clin Immunol. 2016. Vol. 137, N 2. P. 559–561. doi: 10.1016/J.JACI.2015.10.047
  91. Wang C., Chang C., Lee S., et al. Differential DNA methylation profiles of peripheral blood mononuclear cells in allergic asthmatic children following dust mite immunotherapy // J Microbiol Immunol Inf. 2020. Vol. 53, N 6. P. 986–995. doi: 10.1016/j.jmii.2020.06.004
  92. Jakwerth C., Chaker A., Guerth F., et al. Sputum microRNA-screening reveals Prostaglandin EP3 receptor as selective target in allergen-specific immunotherapy // Clin Exp Allergy. 2021. Vol. 51, N 12. P. 1577–1591. doi: 10.1111/CEA.14013

© Фармарус Принт Медиа, 2023

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах