Genetic risk factors of food allergy: a review of genome-wide studies

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Food allergy (FA) is an urgent problem for public health worldwide. This disease reduces the quality of life of patients and increases the risk of developing unpredictable anaphylactic reactions.

AIM: Conduct an analysis of genetic studies in cohorts of patients with FA aimed at assessing the role of genetic factors in the development of this pathology.

MATERIALS AND METHODS: The results of genome-wide association studies aimed at studying the influence of genetic factors in FA development. The review includes original articles published for the period from January 1, 2012 to December 31, 2021.

RESULTS: This systematic review analyzed data on the relationship of genetic variations associated with FA. Eight studies were analyzed, and the maximum effect with the development of IgE-mediated FA on peanuts was found for the rs10018666 variant of the SLC2A9 gene in Europeans. Some allergens associated with specific loci have been found, for example, variants rs9273440 (HLA-DQB1), rs115218289 (ITGA6), rs10018666 (SLC2A9), and others are unique to peanut. Associated variants are predominantly associated with disorders of the innate/adaptive immune response and functioning of the epithelial barrier, confirming their leading role in FA development. In addition to associations with FA, most of the identified genes affect the development of other “allergic march” phenotypes, including atopic dermatitis, bronchial asthma, allergic rhinitis, and non-allergic (type 2 diabetes mellitus, Parkinson’s disease, myocardial infarction, and others) diseases.

CONCLUSIONS: Summarizing the results of genome-wide associative studies, it should be noted that the development of food allergies involves variants localized both in known atopic and newly identified loci that are not related to the development of other allergic diseases. The peculiarities of the structure of food sensitization and the lack of research on the susceptibility to food allergies in Russia determine the direction of further scientific research in this area.

About the authors

Ulyana V. Kutas

Siberian State Medical University

Author for correspondence.
Email: uliaka007@gmail.com
ORCID iD: 0000-0003-3495-0832
SPIN-code: 3201-5750
Russian Federation, Tomsk

Olga S. Fedorova

Siberian State Medical University

Email: fedorova.os@ssmu.ru
ORCID iD: 0000-0002-7130-9609
SPIN-code: 5285-4593
Russian Federation, Tomsk

Elena Yu. Bragina

Tomsk National Research Medical Center, Research Institute of Medical Genetics

Email: elena.bragina72@gmail.com
ORCID iD: 0000-0002-1103-3073
SPIN-code: 8776-6006
Russian Federation, Tomsk

References

  1. Muraro A, Werfel T, Hoffmann-Sommergruber K, et al. EAACI Food allergy and anaphylaxis guidelines: diagnosis and management of food allergy. Allergy. 2014;69(8):1008–1025. doi: 10.1111/all.12429
  2. Agache I, Akdis CA, Chivato T, et al. EAACI white paper on research, innovation and quality care. 2019 [Accessed 2019 Febr 14]. Available from: www.eaaci.org/resources/books/white-paper.html. Accessed: 15.01.2022.
  3. Gupta RS, Warren CM, Smith BM, et al. The public health impact of parent-reported childhood food allergies in the United States. Pediatrics. 2018;142(6):e20181235. doi: 10.1542/peds.2018-1235
  4. Fedorova OS. The prevalence of food allergies in children in the global focus of opisthorchiasis. Bulletin Siberian Med. 2010;9(5): 102–107. (In Russ). doi: 10.20538/1682-0363-2010-5-102-107
  5. Renz H, Allen KJ, Sicherer SH, et al. Food allergy. Nature Rev Disease Primers. 2018;4(1):1–20. doi: 10.1038/nrdp.2017.98
  6. Sicherer SH, Sampson HA, Food allergy: A review and update on epidemiology, pathogenesis, diagnosis, prevention, and management. J Allergy Clin Immunol. 2018;141(1):41–58. doi: 10.1016/j.jaci.2017.11.003
  7. Wahn U. What drives the allergic march? Allergy. 2000;55(7): 591–599. doi: 10.1034/j.1398-9995.2000.00111.x
  8. Li J, Ogorodova LM, Mahesh PA, et al. Comparative study of food allergies in children from China, India, and Russia: The EuroPrevall-INCO surveys. J Allergy Clin Immunol Pract. 2020;8(4):1349–1358.e16. doi: 10.1016/j.jaip.2019.11.042
  9. Paul JT, Gowland MH, Sharma V, et al. Increase in anaphylaxis-related hospitalizations but no increase in fatalities: an analysis of United Kingdom national anaphylaxis data, 1992–2012. J Allergy Clin Immunol. 2015;135(4):956–963.e1. doi: 10.1016/j.jaci.2014.10.021
  10. Wood R, Camargo C, Lieberman P, et al. Anaphylaxis in America: The prevalence and characteristics of anaphylaxis in the United States. J Allergy Clin Immunol. 2014;133(2):461–467. doi: 10.1016/j.jaci.2013.08.016
  11. Simons FE, Ebisawa M, Sanchez-Borges M, et al. 2015 update of the evidence base: World Allergy Organization anaphylaxis guidelines. World Allergy Organ J. 2015;8(1):32. doi: 10.1186/s40413-015-0080-1
  12. Tham EH, Leung DY. Mechanisms by which atopic dermatitis predisposes to food allergy and the atopic march. Allergy Asthma Immunol Res. 2019;11(1):4–15. doi: 10.4168/aair.2019.11.1.4
  13. Sicherer SH, Furlong TJ, Maeset HH, et al. Genetics of peanut allergy: A twin study. J Allergy Clin Immunol. 2000;106(1 Pt 1):53–56. doi: 10.1067/mai.2000.108105
  14. Spergel JM, Beausoleil JL, Pawlowski NA. Resolution of childhood peanut allergy. Annals Allergy Asthma Immunol. 2000; 85(6 Pt 1):473–476. doi: 10.1016/S1081-1206(10)62574-4
  15. Kanchan K, Clay S, Irizar H, et al. Current insights into the genetics of food allergy. Am Acad Allergy Asthma Immunol. 2021;147(1): 15–28. doi: 10.1016/j.jaci.2020.10.039
  16. Hong X, Hao K, Ladd-Acosta C, et al. Genome-wide association study identifies peanut allergy-specific loci and evidence of epigenetic mediation in US children. Nature Communications. 2015;6:6304. doi: 10.1038/ncomms7304
  17. Khor S, Hao K, Ladd-Acosta C, et al. Genome-wide association study of self-reported food reactions in Japanese identifies shrimp and peach specific loci in the HLA-DR/DQ gene region. Sci Reports. 2017;8(1):1069. doi: 10.1038/s41598-017-18241-w
  18. Rubicz R, Yolken R, Alaedini A, et al. Genome-wide genetic and transcriptomic investigation of variation in antibody response to dietary antigens. Genetic Epidemiol. 2014;38(5):439–446. doi: 10.1002/gepi.21817
  19. Liu X, Hong X, Tsai HJ, et al. Genome-wide association study of maternal genetic effects and parent-of-origin effects on food allergy. Medicine. 2018;97(9):e0043. doi: 10.1097/MD.0000000000010043
  20. Marenholz I, Grosche S, Kalb B, et al. Genome-wide association study identifies the SERPINB gene cluster as a susceptibility locus for food allergy. Nature Communications. 2017;8(1):1056. doi: 10.1038/s41467-017-01220-0
  21. Fukunaga K, Chinuki Y, Hamada Y, et al. Genome-wide association study reveals an association between the HLA-DPB1*02:01:02 allele and wheat-dependent exercise-induced anaphylaxis. Am J Human Genetics. 2021;108(8):1540–1548. doi: 10.1016/j.ajhg.2021.06.017
  22. Asai Y, Eslami A, Ginkel CD, et al. Genome-wide association study and meta-analysis in multiple populations identifies new loci for peanut allergy and establishes c11orf30/EMSY as a genetic risk factor for food allergy. J Allergy Clin Immunol. 2017;141(3):991–1001. doi: 10.1016/j.jaci.2017.09.015
  23. Martino DJ, Ashley S, Koplin J, et al. Genome-wide association study of peanut allergy reproduces association with amino acid polymorphisms in HLA-DRB1. Clin Exp Allergy. 2016;47(2):217–223. doi: 10.1111/cea.12863
  24. Ozaki K, Ohnishi Y, Iida A, et al. Functional SNPs in the lymphotoxin-alpha gene that are associated with susceptibility to myocardial infarction. Nature Genetics. 2002;32(4):650–654. doi: 10.1038/ng1047
  25. Klein RJ, Zeiss C, Chew EY, et al. Complement factor H polymorphism in age-related macular degeneration. Science. 2005; 308(5720):385–389. doi: 10.1126/science.1109557
  26. Duerr RH, Taylor KD, Brant SR, et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science. 2006;314(5804):1461–1463. doi: 10.1126/science.1135245
  27. Lacher M, Schroepf S, Helmbrecht J, et al. Association of the interleukin-23 receptor gene variant rs11209026 with Crohn’s disease in German children. Asta Paediatrica. 2010;99(5):727–733. doi: 10.1111/j.1651-2227.2009.01680.x
  28. Zhu Z, Lee PH, Chaffin MD, et al. A genome-wide cross-trait analysis from UK Biobank highlights the shared genetic architecture of asthma and allergic diseases. Nature Genetics. 2018;50(6): 857–864. doi: 10.1038/s41588-018-0121-0
  29. Melen E, Granell R, Kogevinas M, et al. Genome-wide association study of body mass index in 23 000 individuals with and without asthma. Clin Exp Allergy. 2013;43(4):463–474. doi: 10.1111/cea.12054
  30. Sandilands A, Sutherland C, Irvine AD, et al. Filaggrin in the frontline: Role in skin barrier function and disease. J Cell Sci. 2009; 122(9):1285–1294. doi: 10.1242/jcs.033969
  31. Drislane C, Irvine AD. The role of filaggrin in atopic dermatitis and allergic disease. Ann Allergy Asthma Immunol. 2020;124(1):36–43. doi: 10.1016/j.anai.2019.10.008
  32. Baurecht H, Irvine AD, Novaket N, et al. Toward a major risk factor for atopic eczema: Meta-analysis of filaggrin polymorphism data. J Allergy Clin Immunol. 2007;120(6):1406–1412. doi: 10.1016/j.jaci.2007.08.067
  33. Brown SJ, Asai Y, Cordell HJ, et al. Loss-of-function variants in the filaggrin gene are a significant risk factor for peanut allergy. J Allergy Clin Immunol. 2011;127(3):661–667. doi: 10.1016/j.jaci.2011.01.031
  34. MacArthur J, Bowler E, Cerezo M, et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res. 2017;45(D1):896–901. doi: 10.1093/nar/gkw1133
  35. Chen J, Chen Q, Wu C, et al. Genetic variants of the C11orf30-LRRC32 region are associated with childhood asthma in the Chinese population. Allergologia Immunopathol. 2020;48(4): 390–394. doi: 10.1016/j.aller.2019.09.002
  36. Manz J. Regulatory mechanisms underlying atopic dermatitis: Functional characterization of the C11orf30/LRRC32 locus and analysis of genome-wide expression profiles in patients: dissertation. Neuherberg: Technical university of Munich; 2017.
  37. Hughes-Davies L, Huntsman D, Ruas M, et al. EMSY links the BRCA2 pathway to sporadic breast and ovarian cancer. Cell. 2003; 115(5):523–535. doi: 10.1016/s0092-8674(03)00930-9
  38. Greisenegger EK, Zimprich F, Zimprich A, et al. Association of the chromosome 11q13.5 variant with atopic dermatitis in Austrian patients. Eur J Dermatol. 2013;23(2):142–145. doi: 10.1684/ejd.2013.1955
  39. Ollendorff V, Szepetowski P, Mattei MG, et al. New gene in the homologous human 11q13-q14 and mouse 7F chromosomal regions. Mamm Genome. 1992;2(3):195–200. doi: 10.1007/BF00302877
  40. Kubo A, Shiohama A, Sasaki T, et al. Mutations in SERPINB7, encoding a member of the serine protease inhibitor superfamily, cause Nagashima-type palmoplantar keratosis. Am J Human Genetics. 2013;93(5):945–956. doi: 10.1016/j.ajhg.2013.09.015
  41. Karczewski KJ, Francioli LC, Tiao G, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581(7809):434–443. doi: 10.1038/s41586-020-2308-7
  42. Johnatty SE, Beesley J, Chen X, et al. Evaluation of candidate stromal epithelial cross-talk genes identifies association between risk of serous ovarian cancer and TERT, a cancer susceptibility “hot-spot”. PLOS Genetics. 2010;6(7):e1001016. doi: 10.1371/journal.pgen.1001016
  43. Xia Y, Li Y, Du Y, et al. Association of MEGSIN 2093C-2180T haplotype at the 3’ untranslated region with disease severity and progression of IgA nephropathy. Nephrology Dialysis Transplantation. 2006;21(6):1570–1574. doi: 10.1093/ndt/gfk096
  44. Xia YF, Huang S, Li X, et al. A family-based association study of megsin A23167G polymorphism with susceptibility and progression of IgA nephropathy in a Chinese population. Clin Nephrol. 2006;65(3):153–159. doi: 10.5414/cnp65153
  45. Lim CS, Kim SM, Oh YK, et al. Megsin 2093T-2180C haplotype at the 3’ untranslated region is associated with poor renal survival in Korean IgA nephropathy patients. Clin Nephrol. 2008;70(2):101–109. doi: 10.5414/cnp70101
  46. Maixnerova D, Merta M, Reiterova J, et al. The influence of two megsin polymorphisms on the progression of IgA nephropathy. Folia Biologica. 2008;54(2):40–45.
  47. Fenner J, Silverberg NB. Skin diseases associated with atopic dermatitis. Clin Dermatol. 2018;36(5):631–640. doi: 10.1016/j.clindermatol.2018.05.004
  48. Ellinghaus D, Baurecht H, Esparza-Gordillo J, et al. High-density genotyping study identifies four new susceptibility loci for atopic dermatitis. Nature Genetics. 2013;45(7):808–812. doi: 10.1038/ng.2642
  49. Newton-Cheh C, Johnson T, Gateva V, et al. Genome-wide association study identifies eight loci associated with blood pressure. Nature Genetics. 2009;41(6):666–676. doi: 10.1038/ng.361
  50. Niu W, Zhang Y, Ji K, et al. Confirmation of top polymorphisms in hypertension genome wide association study among Han Chinese. Clin Chimica Acta. 2010;411(19-20):1491–1495. doi: 10.1016/j.cca.2010.06.004
  51. Hong KW, Jin HS, Lim JE, et al. Recapitulation of two genomewide association studies on blood pressure and essential hypertension in the Korean population. J Human Genetics. 2010;55(6):336–341. doi: 10.1038/jhg.2010.31
  52. Wain LV, Verwoert GC, O’Reilly PF, et al. Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure. Nature Genetics. 2011;43(10): 1005–1011. doi: 10.1038/ng.922
  53. Rivadeneira F, Styrkársdottir U, Estrada K, et al. Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nature Genetics. 2009;41(11): 1199–1206. doi: 10.1038/ng.446
  54. Do CB, Tung JY, Dorfman E, et al. Web-based genome-wide association study identifies two novel loci and a substantial genetic component for Parkinson’s disease. PLOS Genetics. 2011;7(6):e1002141. doi: 10.1371/journal.pgen.1002141
  55. Kiel DP, Demissie S, Dupuis J, et al. Genome-wide association with bone mass and geometry in the Framingham Heart Study. BMC Med Genetics. 2007;8(Suppl 1):S14 doi: 10.1186/1471-2350-8-S1-S14
  56. Schunkert H, König IR, Kathiresan S, et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nature Genetics. 2011;43(4):333–338. doi: 10.1038/ng.784
  57. Zhang F, Liu H, Chen S, et al. Identification of two new loci at IL23R and RAB32 that influence susceptibility to leprosy. Nature Genetics. 2011;43(12):1247–1251. doi: 10.1038/ng.973
  58. Hendrickson SL, Lautenberger JA, Chinn LW, et al. Genetic variants in nuclear-encoded mitochondrial genes influence AIDS progression. PLOS One. 2010;5(9):e12862. doi: 10.1371/journal.pone.0012862
  59. Augustin R, Carayannopoulos MO, Dowd LO, et al. Identification and characterization of human glucose transporter-like protein-9 (GLUT9): Alternative splicing alters trafficking. J Biological Chemistry. 2004;279(16):16229–16236. doi: 10.1074/jbc.M312226200
  60. Bobulescu IA, Moe OW. Renal transport of uric acid: evolving concepts and uncertainties. Adv Chronic Kidney Dis. 2012;19(6): 358–371. doi: 10.1053/j.ackd.2012.07.009
  61. Tabara Y, Kohara K, Kawamoto R, et al. Association of four genetic loci with uric acid levels and reduced renal function: The J-SHIPP Suita study. Am J Nephrol. 2010;32(3):279–286. doi: 10.1159/000318943
  62. Polasek O, Gunjaca G, Kolcic I, et al. Association of nephrolithiasis and gene for glucose transporter type 9 (SLC2A9): Study of 145 patients. Croatian Med J. 2010;51(1):48–53. doi: 10.3325/cmj.2010.51.48
  63. Brandstätter A, Lamina C, Kiechl S, et al. Sex and age interaction with genetic association of atherogenic uric acid concentrations. Atherosclerosis. 2010;210(2):474–478. doi: 10.1016/j.atherosclerosis.2009.12.013
  64. Li C, Han L, Levin AM, et al. Multiple single nucleotide polymorphisms in the human urate transporter 1 (hURAT1) gene are associated with hyperuricaemia in Han Chinese. J Med Genetics. 2010;47(3):204–210. doi: 10.1136/jmg.2009.068619
  65. Dehghan A, Köttgen A, Yang Q, et al. Association of three genetic loci with uric acid concentration and risk of gout: A genome-wide association study. Multicenter Study. 2008;372(9654):1953–1961. doi: 10.1016/S0140-6736(08)61343-4
  66. Brandstätter A, Kiechl S, Kollerits B, et al. Sex-specific association of the putative fructose transporter SLC2A9 variants with uric acid levels is modified by BMI. Diabetes Care. 2008;31(8):1662–1667. doi: 10.2337/dc08-0349
  67. Stark K, Reinhard W, Neureuther K, et al. Association of common polymorphisms in GLUT9 gene with gout but not with coronary artery disease in a large case-control study. PLoS One. 2008;3(4):e1948. doi: 10.1371/journal.pone.0001948
  68. Wallace C, Newhouse SJ, Braund P, et al. Genome-wide association study identifies genes for biomarkers of cardiovascular disease: Serum urate and dyslipidemia. Am J Human Genetics. 2008;82(1):139–149. doi: 10.1016/j.ajhg.2007.11.001
  69. Kolz M, Johnson T, Sanna S, et al. Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet. 2009;5(6):e1000504. doi: 10.1371/journal.pgen.1000504
  70. Li S, Sanna S, Maschio A, et al. The GLUT9 gene is associated with serum uric acid levels in Sardinia and Chianti cohorts. PLoS Genet. 2007;3(11):e194. doi: 10.1371/journal.pgen.0030194
  71. Suhre K, Shin SY, Petersen AK, et al. Human metabolic individuality in biomedical and pharmaceutical research. Nature. 2011;477(7362):54–60. doi: 10.1038/nature10354
  72. Fine JD, Bruckner-Tuderman L, Eady RA, et al. Inherited epidermolysis bullosa: Updated recommendations on diagnosis and classification. J Am Academy Dermatol. 2014;70(6):1103–1126. doi: 10.1016/j.jaad.2014.01.903
  73. Chung HJ, Uitto J. Epidermolysis bullosa with pyloric atresia. Dermatol Clin. 2010;28(1):43–54. doi: 10.1016/j.det.2009.10.005

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Algorithm for the publication search.

Download (419KB)

Copyright (c) 2022 Kutas U.V., Fedorova O.S., Bragina E.Y.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies