Bronchial asthma: pharmacogenetic approaches to optimization of inhaled glucocorticosteroid therapy


Cite item

Full Text

Abstract

According to national and international clinical guidelines, inhaled glucocorticosteroids (IGCS) are the most effective drugs in bronchial asthma (BA) therapy. However, IGCS do not always contribute to the full asthma control. In addition to external factors, including low adherence to medical recommendations, errors in the inhalation technique, comorbid conditions, lack of control over the effectiveness of therapeutic measures, and sometimes incorrect diagnosis, recently, much attention has been paid to pharmacogenetic mechanisms in reducing the effectiveness of asthma therapy. The article presents overview data on the pharmacogenetic features of reducing the effectiveness of inhaled corticosteroids in bronchial asthma therapy.

About the authors

A K Zastrozhina

Children's City Polyclinic No. 42 of the Moscow Healthcare Department

врач аллерголог-иммунолог

I N Zakharova

Russian Medical Academy of Postgraduate Education of Russian Ministry of Health

зав. кафедрой педиатрии с курсом поликлинической педиатрии им. академика Г.Н. Сперанского, Заслуженный врач РФ, доктор медицинских наук, профессор

D A Sychev

Russian Medical Academy of Postgraduate Education of Russian Ministry of Health

ректор, зав. кафедрой клинической фармакологии и терапии, член-корреспондент РАН, доктор медицинских наук, профессор

References

  1. Поликарпов АВ, Александрова ГА, Голубева Н.А. Статистические материалы. Общая заболеваемость детского населения России (0-14 лет) в 2017 году. Часть VI. 2018:144. Доступен по ссылке: https://www.rosminzdrav.ru/ ministry/. Доступ от 20.04.2019
  2. Global Initiative for Asthma. Global strategy for asthma management and prevention, 2019. Available from: www ginasthma.org (Accessed in April 2019).
  3. Национальная программа «Бронхиальная астма у детей. Стратегия лечения и профилактика». 5-е изд., перераб. и доп. М.: Оригинал-макет. 2017:160
  4. Федеральные клинические рекомендации Бронхиальная астма у детей. 2017 год. Союз педиатров России. Российская Ассоциация Аллергологов и Клинических Иммунологов. Доступно: https://www.pediatr-russia.ru/. Доступ 20.04.2019
  5. Szefler SJ, Martin RJ, King TS, Boushey HA, Cherniack RM, Chinchilli VM et al. Significant variability in response to inhaled corticosteroids for persistent asthma. J. Allergy Clin Immunol 2002;109:410-418.
  6. Drazen JM, Silverman EK, Lee TH. Heterogeneity of therapeutic responses in asthma. Br Med Bull. 2000;56:1054-1070.
  7. Зайцева СВ. Оценка эффективности и возможности оптимизации терапии бронхиальной астмы у детей. Дис. канд. мед. наук. 2001. РГМУ, М., 161 с.
  8. Застрожина АК, Сычев ДА, Зайцева СВ, Архипов ВВ, Панферова ОО, Каленов СЕ, Соболева ОИ. Фар-макоэпидемиологический анализ у детей с брон хиальной астмой в амбулаторно-поликлинической практике: ретроспективное исследование. Consilium Medicum. Педиатрия (Прил.). 2018;04:72-82. doi: 10.26442/24138460.2018.4.000057
  9. Цой АН, Архипов ВВ. Фармакоэпидемиологический анализ амбулаторной терапии бронхиальной астмы у взрослых и подростков в Москве в 2003 г. Consilium Medicum. 2004;04:248-254
  10. Скоков МВ, Филатова ЮИ. Комплаенс и контроль бронхиальной астмы. Молодой ученый. 2014;17:195-200
  11. Gamble J., Stevenson M., McClean E., Heaney LG. The prevalence of nonadherence in difficult asthma. Am J. Respir Crit Care Med. 2009;180(9):817-822. DOI: 10.1164/ rccm.200902-0166OC.
  12. Ильенкова НА, Черепанова ИВ, Вохмина ТА. Проблемы приверженности терапии у детей с бронхиальной астмой. Педиатрическая фармакология. 2016;13(6):565-570. doi: 10.15690/pf.v13i6.1670
  13. Chung KF, Wenzel SE, Brozek JL et al. International ERS/ ATS guidelines on definition, evaluation and treatment of severe asthma. Eur Respir J. 2014;43:343-373. doi: 10.1183/09031936.00202013.
  14. Global Initiative for Asthma. Difficult-to-treat and Severe Asthma in adolescent and adult patients. Diagnosis and Management. Pocket Guide for half professional. Available from: https://ginasthma.org/gina-ebooks. Accessed 2019 April 20.
  15. Согласительный доклад объединенной группы экспертов тяжелая бронхиальная астма. Состав объединенной группы экспертов: Барановская ТВ, Белевский АС, Восканян АГ и др. Доступен по ссылке: http://spulmo.ru/
  16. Застрожина АК, Сычев ДА. Фармакогенетические аспекты эффективности и безопасности ингаляционных глюкокортикостероидов в лечении бронхиальной астмы. Клин фарм тер. 2018;27:64-68. doi: 10.32756/0869-54902018-5-64-68
  17. Farzan N., Vijverberg SJ, Arets HG, Raaijmakers JA, Maitland-van der Zee AH. Pharmacogenomics of inhaled corticosteroids and leukotriene modifiers: a systematic review. Clin Exp Allergy. 2017;47:271-293. doi: 10.1111/cea.12844.
  18. Keskin O., Farzan N., Birben E. et al. Genetic associations of the response to inhaled corticosteroids in asthma: a systematic review. Clin Transl Allergy. 2019;9:2. doi: 10.1186/s13601-018-0239-2.
  19. Garcia-Menaya JM, Cordobes-Duran C, Garcia-Martin E, Agundez JAG. Pharmacogenetic Factors Affecting Asthma Treatment Response. Potential Implications for Drug Therapy. Front. Pharmacol. 2019; 10:520. DOI: 10.3389/ fphar.2019.00520.
  20. Ortega VE, Meyers DA, Bleecker ER. Asthma pharmacogenetics and the development of genetic profiles for personalized medicine. Pharmacogenomics and Personalized Medicine 2015;8:9-22, doi: 10.2147/PGPM.S52846.
  21. Mak ACY, White MJ, Eckalbar WL, Szpiech ZA, Oh SS, Pino-Yanes M. et al. Whole-Genome Sequencing of Pharma-cogenetic Drug Response in Racially Diverse Children with Asthma. Am J. Respir Crit Care Med. 2018;197:1552-1564. doi: 10.1164/rccm.201712-2529OC.
  22. Nagase T., Ishikawa K., Suyama M., Kikuno R., Hirosawa M., Miyajima N., Tanaka A., Kotani H., Nomura N., Ohara O. Prediction of the coding sequences of unidentified human genes. XII. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. 1999: DNA Res. 5:355-364.
  23. Cenciarelli C., Chiaur DS, Guardavaccaro D., Parks W., Vidal M., Pagano M. Identification of a family of human F-box proteins. Curr Biol. 1999:9:1177-1179.
  24. Coon TA, Glasser JR, Mallampalli RK, Chen BB. Novel E3 ligase component FBXL7 ubiquitinates and degrades Aurora A., causing mitotic arrest. Cell Cycle. 2012;11:721-729. doi: 10.4161/cc.11.4.19171.
  25. Liu Y., Lear T., Zhao Y., Zhao J., Zou C., Chen BB et al. F-box protein Fbxl18 mediates polyubiquitylation and proteasomal degradation of the pro-apoptotic SCF subunit Fbxl7. Cell Death Dis. 2015;6:1630-1638. doi: 10.1038/cddis.2014.585.
  26. Morgan DO. The cell cycle: principles of control. London: New science press. 2007;47:297.
  27. Fasanaro P., Maurizio C. Capogrossi, Fabio Martelli. Regulation of the endothelial cell cycle by the ubiquitin-proteasome system. Cardiovascular Research. 2010;85:272-280. doi: 10.1093/cvr/cvp244.
  28. Skaar JR, Pagan JK, Pagano M. Mechanisms and function of substrate recruitment by F-box proteins. Nat Rev Mol Cell Biol. 2013;14:369-381. doi: 10.1038/nrm3582.
  29. Galan JM, Peter M. Ubiquitin-dependent degradation of multiple F-box proteins by an autocatalytic mechanism. Proc Natl Acad Sci USA. 1999;96:9124-9129. DOI: 10.1073/ pnas.96.16.9124.
  30. Liu Y., Lear T., Iannone O., Shiva S., Corey C., Rajbhandari S., Jerome J., Chen BB, Mallampalli RK. The proapoptotic F-box protein Fbxl7 regulates mitochondrial function by mediating the ubiquitylation and proteasomal degradation of survivin. J. Biol Chem. 2015;290:11843-11852. doi: 10.1074/jbc. M114.629931.
  31. Park HW, Dahlin A., Tse S., Duan QL, Schuemann B., Martinez FD et al. Genetic predictors associated with improvement of asthma symptoms in response to inhaled corticosteroids. J. Allergy Clin Immunol. 2014;133:664-669. DOI: 10.1016/j. jaci.2013.12.1042.
  32. Сычев ДА, Раменская ГВ, Игнатьев ИВ, Кукес ВГ. Клиническая фармакогенетика. Учеб. пособие. Под ред. В.Г. Кукеса, Н.П. Бочкова. М.: ГЭОТАР-Медиа. 2007:248
  33. Hoffmeyer S., Burk O., von Richter O., Arnold HP, Brockmoller J., Johne A. et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlations of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci USA. 2000;97:3473-3478. doi: 10.1073/pnas.050585397.
  34. Hitzl M., Drescher S., Kuip H., Schaffeler E., Fischer J., Schwab M. et al. The C3435T mutation in the human MDR1 gene is associated with altered efflux of the P-glycoprotein substrate rhodamine 123 from CD56+ natural killer cells. Pharmacogenetics. 2001;11:293-298.
  35. Drescher S., Schaeffeler E., Hitzl M., Hofmann U., Schwab M., Brinkmann U., et al. MDR1 gene polymorphisms and disposition of the P-glycoprotein substrate fexofenadine. Br J. Clin Pharmacol. 2002;53:526-534. doi: 10.1046/j.1365-2125.2002.01591.x.
  36. Siegsmund M., Brinkmann U., Schaffeler E. Association of the P-glycoprotein transporter MDR1(C3435T) polymorphisms with the susceptibility to tenal epithelial tumors. J. Am Soc Nephrol. 2002;13:1847-1854. doi: 10.1097/01. asn.0000019412.87412.bc.
  37. Marzolini P., Buclin K. Polymorphisms in human MDR1 (P-glycoprotein): Recent advances and clinical revelance. Clin Pharmacol Ther. 2004;75:13-33. DOI: 10.1016/j. clpt.2003.09.012.
  38. Миронова ЖА, Трофимов ВИ, Дубина МВ. Фармако-генетические аспекты терапевтически резистентной бронхиальной астмы. Пульмонология. 2013;6:5-10. doi: 10.18093/0869-0189-2013-0-6-691-703
  39. Воропаев ЕВ, Рузанов ДЮ, Осипкина ОВ, Штанзе ВА, Переволоцкая ТВ, Переволоцкий АН и соавт. Ассоциация полиморфизма генов MDR1, ADRB2 и IL-13 с развитием трудноконтролируемой бронхиальной астмы. Проблемы здоровья и экологии. 2018;1:50-56
  40. Duksal F., Kurtulgan HK, Cevit O., Koksal B. Relationship Between Childhood Asthma and C3435T Multidrug Resistance 1 Gene. J. Clin Anal Med. 2015;6(suppl 6):756-760.
  41. Tantisira KG, Lasky-Su J., Harada M., Murphy A., Litonjua AA, Himes BE et al. Genomewide Association betweenGL-CCI1and Response to Glucocorticoid Therapy in Asthma. New England Journal of Medicine. 2011;365:1173-1183. doi: 10.1056/nejmoa0911353.
  42. Chapman MS, Qu N., Pascoe S. et al. Isolation of differentially expressed sequence tags from steroid-responsive cells using mRNA differential display. Mol Cell Endocrinol. 1995;108:1-7.
  43. Chapman MS, Askew DJ, Kuscuoglu U., Miesfeld RL. Transcriptional control of steroid-regulated apoptosis in murine thymoma cells. Mol Endocrinol. 1996;10:967-978.
  44. Ho CY, Wong CK, Ko FW Chan CH, Ho AS, Hui DS et al. Apoptosis and B-cell lymphoma-2 of peripheral blood T. lymphocytes and soluble fas in patients with allergic asthma. Chest. 2002;122:1751-1758.
  45. Hu C., Xun Q., Li X., He R., Lu R., Zhang S., Hu X., Feng J. GLCCI1 variation is associated with asthma susceptibility and inhaled corticosteroid response in a Chinese Han population. Arch Med Res. 2016;47:118-125. DOI: 10.1016/j. arcmed.2016.04.005.
  46. Cato AC, Nestl A., Mink S. Rapid actions of steroid receptors in cellular signaling pathways. Sci STKE. 2002;138:9. doi: 10.1126/stke.2002.138.re9.
  47. Lu NZ, Cidlowski JA. The origin and functions of multiple human glucocorticoid receptor isoforms. Ann NY Acad Sci. 2004;1024:102-123.
  48. Bray PJ, Cotton RG. Variations of the human glucocorticoid receptor gene (NR3C1): pathological and in vitro mutations and polymorphisms. Hum Mutat. 2003;21:557-568. doi: 10.1002/humu.10213.
  49. Kaymak CM, Karabulut HG, Yurur Kutlay N., Ilgin Ruhi H., Tukun A., Olcay L. Association Between N363S and BclI Polymorphisms of the Glucocorticoid Receptor Gene (NR3C1) and Glucocorticoid Side Effects During Childhood Acute Lymphoblastic Leukemia Treatment. Turk J. Haematol. 2017;34:151-158. doi: 10.4274/tjh.2016.0253.
  50. Pietras T., Panek M., Tworek D., Oszajca K., Wujcik R., Gorski P. Kuna P., Szemraj J. The Bcl I. single nucleotide polymorphism ofthe human glucocorticoid receptor gene h-GR/NR3C1 promoter in patients with bronchial asthma: pilot study. Mol Biol Rep. 2011;38:3953-398. doi: 10.1007/s11033-010-0512-5.
  51. Panek M., Pietras T., Antczak A., Fabijan A., Przemęcka M., Gorski P. Kuna P., Szemraj J. The N363S and I559N single nucleotide polymorphisms of the h-GR/NR3C1 gene in patients with bronchial asthma. Int J. Mol Med. 2012l;30:142-150. doi: 10.3892/ijmm.2012.956.
  52. Szczepankiewicz А., Breborowicz Р. Sobkowiak et al. No association of glucocorticoid receptor polymorphisms with asthma and response to glucocorticoids. Adv Med Sci. 2008;53:245-250. doi: 10.2478/v10039-008-0042-8.
  53. Derendorf H. Pharmacokinetic and pharmacodynamic properties of inhaled corticosteroids in relation to efficacy and safety. Respir Med. 1997;91(suppl. A):22-28.
  54. Koch I., Weil R., Wolbold R., Brockmoller J., Hustert E., Burk O., Nuessler A., Neuhaus P., Eichelbaum M., Zanger U., Wojnowski L. Interindividual variability and tissue specificity in the expression of cytochrome P450 3A mRNA. Drug Metab Dispos. 2002;30:1108-1114. doi: 10.1124/dmd.30.10.1108.
  55. Moore CD, Roberts JK, Orton CR, Murai T. Fidler TP, Reilly CA et al. Metabolic pathways of inhaled glucocorticoids by the CYP3A enzymes. Drug Metab Dispos. 2013;41:379-389. doi: 10.1124/dmd.112.046318.
  56. Murai T., Reilly CA, Ward RM, Yost GS. The inhaled glucocorticoid fluticasone propionate efficiently inactivates cytochrome P450 3A5, a predominant lung P450 enzyme. Chem Res Toxicol. 2010;23:1356-1364. doi: 10.1021/tx100124k.
  57. Jonsson G., Astrom A., Andersson P. Budesonide is metabolized by cytochrome P450 3A (CYP3A) enzymes in human liver. Drug Metab Dispos. 1995;23:137-142.
  58. Stockmann C., Fassl B., Gaedigk R., Nkoy F., Uchida DA, Monson S. et al. Fluticasone propionate pharmacogenetics: CYP3A4*22 polymorphism and pediatric asthma control. J. Pediatr. 2013;162:1222-1227. doi: 10.1016/j.jpeds.2012.11.031.
  59. Stockmann C., Reilly CA, Fassl B., Gaedigk R., Nkoy F., Stone B., Roberts JK, Uchida DA, Leeder JS, Sherwin CM, Spigarelli MG, Yost GS, Ward RM. Effect of CYP3A5*3 on asthma control among children treated with inhaled beclomethasone. J. Allergy Clin Immunol. 2015;136:505-507. DOI: 10.1016/j. jaci.2015.02.009.
  60. Quaranta S., Chevalier D., Allorfe D., Lo-Guidice JM, Migot-Nabias F., Kenani A. et al. Ethnic differences in the distribution of CYP3A5 gene polymorphisms. Xenobiotica. 2006;36:1191-1200.
  61. Seo T., Pahwa P., McDuffie HH, Yurube K., Egoshi M., Umemoto Y., Ghosh S., Fukushima Y., Nakagawa K. Association between cytochrome P450 3A5 polymorphism and the lung function in Saskatchewan grain workers. Pharmacogenet Genomics. 2008;18:487-493. doi: 10.1097/FPC.0b013e-3282fb02ba.
  62. Застрожина АК, Захарова ИН, Сычев ДА, Гришина ЕА, Рыжикова КА. Ассоциация полиморфизма 6986A>G гена CYP3A5 с эффективностью противовоспалительной терапии у детей с бронхиальной астмой. Российский вестник перинатологии и педиатрии. 2019;64:73-77. doi: 10.21508/1027-4065-2019-64-3-73-77
  63. Hebbar PB, Archer TK. Chromatin remodeling by nuclear receptors. Chromosoma. 2003;111:495-504.
  64. Hawkins GA, Lazarus R., Smith RS, Tantisira KG, Meyers DA, Peters SP et al. The glucocorticoid receptor heterocomplex gene STIP1 is associated with improved lung function in asthmatic subjects treated with inhaled corticosteroids. J. Allergy Clin Immunol. 2009;123:1376-1383. DOI: 10.1016/j. jaci.2009.01.049.
  65. Tantisira KG, Hwang ES, Raby BA, Silverman ES, Lake SL, Richter BG, Peng SL, Drazen JM, Glimcher LH, Weiss ST. TBX21: a functional variant predicts improvement in asthma with the use of inhaled corticosteroids. Proc Natl Acad Sci USA. 2004;101:18099-18104. DOI: 10.1073/ pnas.0408532102.
  66. Ye YM, Lee HY, Kim SH, Jee YK, Lee SK, Lee SH et al. Pharmacogenetic study of the effects of NK2R G231E G>A and TBX21 H33Q C>G polymorphisms on asthma control with inhaled corticosteroid treatment. J. Clin Pharm Ther. 2009;34:693-701. doi: 10.1111/j.1365-2710.2009.01054.x.
  67. Tan WC. Viruses in asthma exacerbations. Curr Opin Pulm Med. 2005;11:21-26.
  68. Kato A., Homma T., Batchelor J., Hashimoto N., Imai S., Wakiguchi H., Saito H., Matsumoto K. Interferon-alpha/beta receptor-mediated selective induction of a gene cluster by CpGoligodeoxynucleotide 2006. BMC Immunol. 2003;4:8. doi: 10.1186/1471-2172-4-8.
  69. Dahlin A., Denny J., Roden DM, Brilliant MH, Ingram C., Kitchner TE et al. CMTR1 is associated with increased asthma exacerbations in patients taking inhaled corticosteroids. Immun Inflamm Dis. 2015;3:350-359. doi: 10.1002/iid3.73.
  70. Park TJ, Park JS, Cheong HS, Park BL, Kim LH, Heo JS et al. Genome-wide association study identifies ALLC polymorphisms correlated with FEV1 change by corticosteroid. Clin Chim Acta. 2014;436:20-26. doi: 10.1016/j.cca.2014.04.023.
  71. Vigetti D., Monetti C., Prati M., Gornati R., Bernardini G. Genomic organization and chromosome localization of the murine and human allantoicase gene. Gene. 2002;289:13-17.
  72. Kim TH, Chang HS, Park SM, Nam BY, Park JS, Rhim T. et al. Association of angiotensin I-converting enzyme gene polymorphisms with aspirin intolerance in asthmatics. Clin Exp Allergy 2008;38:1727-1737. doi: 10.1111/j.1365-2222.2008.03082.x.
  73. Repapi E., Sayers I., Wain LV, Burton PR, Johnson T., Obeidat M. et al. Genome-wide association study identifies five loci associated with lung function. Nat Genet. 2010;42:36-44. doi: 10.1038/ng.501.
  74. Postma DS, Meyers DA, Jongepier H., Howard TD, Koppelman GH, Bleecker ER. Genomewide screen for pulmonary function in 200 families ascertained for asthma. Am J. Respir Crit Care Med. 2005;172:446-452. DOI: 10.1164/ rccm.200407-864OC.
  75. Tantisira KG, Small KM, Litonjua AA, Weiss ST, Liggett Sb. Molecular properties and pharmacogenetics of a polymorphism of adenylyl cyclase type 9 in asthma: interaction between beta-agonist and corticosteroid pathways. Hum Mol Genet. 2005;14:1671-1677. doi: 10.1093/hmg/ddi175.
  76. Tantisira KG, Lake S, Silverman ES, Palmer LJ, Lazarus R, Silverman EK et al. Corticosteroid pharmacogenetics: association of sequence variants in CRHR1 with improved lung function in asthmatics treated with inhaled corticosteroids. Hum Mol Genet. 2004;13:1353-1359. doi: 10.1093/hmg/ ddh149.
  77. Mougey EB, Chen C., Tantisira KG, Blake KV, Peters SP, Wise RA, Weiss ST, Lima JJ. Pharmacogenetics of asthma controller treatment. Pharmacogenomics J. 2013;13:242-250. doi: 10.1038/tpj.2012.5.
  78. Dijkstra A., Koppelman GH, Vonk JM, Bruinenberg M., Schouten JP, Postma DS. Pharmacogenomics and outcome of asthma: no clinical application for long-term steroid effects by CRHR1 polymorphisms. J. Allergy ClinImmunol. 2008;121:1510-1513. doi: 10.1016/j.jaci.2008.04.015.
  79. Vonk JM, Postma DS, Maarsingh H., Bruinenberg M., Koppelman GH, Meurs H. Arginase 1 and arginase 2 variations associate with asthma, asthma severity and beta2 agonist and steroid response. Pharmacogenet Genomics. 2010;20:179-186.
  80. Tantisira KG, Silverman ES, Mariani TJ, Xu J., Richter BG, Klanderman BJ et al. FCER2: a pharmacogenetic basis for severe exacerbations in children with asthma. J. Allergy Clin Immunol. 2007;120:1285-1291. doi: 10.1016/j.jaci.2007.09.005.
  81. Tantisira KG, Damask A., Szefler SJ, Schuemann B., Markezich A., Su J. et al. Genome-wide association identifies the T. gene as a novel asthma pharmacogenetic locus. Am J. Respir Crit Care Med. 2012;185:1286-1291. DOI: 10.1164/ rccm.201111-2061OC.

Copyright (c) 2019 Pharmarus Print Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies