Lysosomal storage diseases. Sphingolipidoses — Fabry, Gaucher and Farber diseases

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Sphingolipidoses are genetically heterogeneous group of rare monogenic metabolic diseasesб caused by inherreted deficiency of enzymes involved in the degradation of sphingolipids. Sphingolipids are catabolized in lysosomes, where glycohydrolases degrade them by separation of terminal sugars to core ceramide. All sphingolipidoses are characterized by abnormal deposition of a large amount of sphingolipids and other unsplit products of lipid metabolism, mainly in parenchymal organs, bone marrow and brain. Among sphingolipidoses, such groups of diseases as glycosphingolipidoses, gangliosidoses and leukodystrophies are distinguished. This review presents the epidemiology, clinical, biochemical and molecular characteristics of the three main types of glycosphingolipidoses — Fabry disease, Gaucher disease and Farber disease, caused by the mutations in the genes of α-galactosidase A (GLA), glucocerebrosidase (GBA) and acid ceramidase (ASAH1), respectively. Currently, there is an increased interest in glycosphingolipidoses due to the identification of the spectrum and frequencies of mutations in the GLA, GBA and ASAH1 genes in various populations, including Russia, and the practical availability of individual molecular diagnostic methods. A description of the existing experimental models, their role in the study of the biochemical basis of the pathogenesis of these severe hereditary diseases and the development of various therapeutic approaches are given. We discuss, firstly, the possibility of early diagnosis of Fabry disease, Gaucher and Farber based on neonatal screening and examination of high risk groups of patients in order to improve the effectiveness of their prevention and treatment, as well as (secondly) the advantages and disadvantages of the main approaches to the treatment of these serious diseases, such as bone marrow and hematopoietic stem cell transplantation, enzyme replacement therapy, substrate reduction therapy, gene therapy and genome editing.

作者简介

Victoria Gorbunova

St. Petersburg State Pediatric Medical University

Email: vngor@mail.ru

PhD, Dr. Biol. Sci., Professor, Department of Medical Genetics

俄罗斯联邦, Saint Petersburg

Natalia Buchinskaia

St. Petersburg State Medical Diagnostic Center (Genetic medical center)

Email: nbuchinskaia@gmail.com

MD, PhD, Pediatrician, Geneticist of Consulting Department

俄罗斯联邦, Saint Petersburg

Grigorii Janus

St. Petersburg State Pediatric Medical University

Email: janus365dd@gmail.com

PhD, Junior Researcher of the Department of General and Molecular Medical Genetics

俄罗斯联邦, Санкт-Петербург

Mikhail Kostik

St. Petersburg State Pediatric Medical University

编辑信件的主要联系方式.
Email: kost-mikhail@yandex.ru

MD, PhD, Dr. Med. Sci., Professor, Department of Hospital Pediatrics

俄罗斯联邦, Санкт-Петербург

参考

  1. Karpishchenko AI, Alekseev VV, Alipov AN. Meditsinskie laboratornye tekhnologii: Rukovodstvo po klinicheskoi laboratornoi diagnostike v 2-kh tomakh. Vol. 2. Moscow: GEHOTAR-Media, 2013. 792 p. (In Russ.)
  2. Baranov AA, Namazova-Baranova LS, Gundobina OS, et al. Managing Children with Gaucher Disease: Modern Clinical Recommendations. Pediatric pharmacology. 2016;13(3): 244–250. (In Russ.) doi: 10.15690/pf.v13i3.1574
  3. Gorbunova VN. Molecular genetics — a way to the individual personalized medicine. Pediatrician (St. Petersburg). 2013;4(1):115–121. (In Russ.) doi: 10.17816/PED41115-121
  4. Gorbunova VN, Baranov VS. Vvedenie v molekulyarnuyu diagnostiku i genoterapiyu nasledstvennykh zabolevanii. Saint Petersburg: Spetsial’naya literatura, 1997. 287 p. (In Russ.)
  5. Gorbunova VN, Buchinskaia NV. Lysosomal storage diseases. Mucopolysaccharidosis types IV, VI, and VII — Morquio, Maroto–Lamy and Sly syndrome. Pediatrician (St. Petersburg). 2021;12(6):107–125. (In Russ.) doi: 10.17816/PED126107-125
  6. Azarov MV, Kupatadze DD, Nabokov VV, et al. A clinical case of extremely severe major venes displasia in a child. Pediatrician (St. Petersburg). 2021;12(2):73–83. (In Russ.) doi: 10.17816/PED12285-89
  7. Gorbunova VN, Buchinskaia NV. Lysosomal storage diseases: mucopolysaccharidosis type I and II. Pediatrician (St. Petersburg). 2021;12(3):69–83. (In Russ.) doi: 10.17816/PED12369-83
  8. Gorbunova VN, Buchinskaya NV. Lysosomal storage diseases. Mucopolysaccharidosis type III, Sanfilippo syndrome. Pediatrician (St. Petersburg). 2021;12(4): 69–81. (In Russ.) doi: 10.17816/PED12469-81
  9. Zhuravleva MV, Khimich TV, Gagarina YuV, Kotrovskiy VA. Clinical and economic impact of screening for fabry disease in children from high risk groups. Klinicheskaya farmakologicheskaya i terapiya. 2021;30(1):36–44. (In Russ.) doi: 10.32756/0869-5490-2021-1-36-42
  10. Karovaikina EA, Moiseev AS, Bulanov NM, et al. Screening, diagnosis and treatment of Fabry disease. Klinicheskaya farmakologicheskaya i terapiya. 2019;28(3):68–74. (In Russ.) doi: 10.32756/0869-5490-2019-3-68-74
  11. Ministerstvo zdravookhraneniya Rossiiskoi Federatsii. Klinicheskie rekomendatsii bolezn’ Fabri (utv. Minzdravom Rossii). 2019–2021 g. Moscow; 2019. (In Russ.)
  12. Lukina EA, Sysoeva EP, Mamonov VE, et al. Natsional’nye klinicheskie rekomendatsii “Diagnostika i lechenie bolezni Goshe”. Natsional’noe gematologicheskoe obshchestvo, 2014. 21 p. (In Russ.)
  13. Novikov PV, Asanov AYu, Kopishinskaya SV, et al. Federal’nye klinicheskie rekomendatsii po diagnostike i lecheniyu bolezni Fabri. Moscow: Ministerstvo zdravookhraneniya Rossiiskoi Federatsii, 2015. 26 p. (In Russ.)
  14. Savchenko VG. Klinicheskie rekomendatsii po diagnostike i lecheniyu bolezni Goshe u vzroslykh. IV Congress of Hematologists of Russia. 2018 Apr 12–14, Moscow. 17 p. (In Russ.)
  15. Tao EA, Moiseev AS, Bulanov NM, et al. End-stage renal disease in patients with Fabry disease. Klinicheskaya farmakologicheskaya i terapiya. 2020;29(4):36–43. (In Russ.) doi: 10.32756/0869-5490-2020-4-36-43
  16. Chikova IA, Buchinskaya NV, Kostik ММ, et al. Farber disease — disease description with case reports. Current Pediatrics. 2014;13(6):78–84. (In Russ.) doi: 10.15690/vsp.v13i6.1207
  17. Aerts JM, Groener JE, Kuiper S, et al. Elevated globotriaosylsphingosine is a hallmark of Fabry disease. PNAS. 2008;105(8):2812–2817. doi: 10.1073/pnas.0712309105
  18. Asano N, Ishii S, Kizu H, et al. In vitro inhibition and intracellular enhancement of lysosomal alpha-galactosidase A activity in Fabry lymphoblasts by 1-deoxygalactonojirimycin and its derivatives. Eur J Biochem. 2000;267(13):4179–4186. doi: 10.1046/j.1432-1327.2000.01457.x
  19. Auray-Blais C, Cyr D, Ntwari A, et al. Urinary globotriaosylceramide excretion correlates with the genotype in children and adults with Fabry disease. Mol Genet Metab. 2008;93(3):331–340. doi: 10.1016/j.ymgme.2007.10.001
  20. Balendran S, Oliva P, Sansen S, et al. Diagnostic strategy for females suspected of Fabry disease. Clin Genet. 2020;97(4):655–660. doi: 10.1111/cge.13694
  21. Balwani M, Burrow TA, Charrow J, et al. Recommendations for the use of eliglustat in the treatment of adults with Gaucher disease type 1 in the United States. Mol Genet Metab. 2016;117(2):95–103. doi: 10.1016/j.ymgme.2015.09.002
  22. Bar J, Linke T, Ferlinz K, et al. Molecular analysis of acid ceramidase deficiency in patients with Farber disease. Hum Mutat. 2001;17(3):199–209. doi: 10.1002/humu.5
  23. Barton NW, Brady RO, Dambrosia JM, et al. Replacement therapy for inherited enzyme deficiency: macrophage-targeted glucocerebrosidase for Gaucher’s disease. N Engl J Med. 1991;324:1464–1470. doi: 10.1056/NEJM199105233242104
  24. Baydakova G, Ilyushkina A, Gaffke L, et al. Elevated LysoGb3 Concentration in the Neuronopathic Forms of Mucopolysaccharidoses. Diagnostics. 2020;10(3):155. doi: 10.3390/diagnostics10030155
  25. Baydakova GV, Ilyushkina AA, Moiseev SV, et al. α-Galactosidase A/lysoGb3 ratio as a potential marker for Fabry disease in females. Clin Chim Acta. 2020;501:27–32. doi: 10.1016/j.cca.2019.10.031
  26. Beckmann N, Kadow S, Schumacher F, et al. Pathological manifestations of Farber disease in a new mouse model. A Biol Chem. 2018;399(10):1183–1202. doi: 10.1515/HSZ-2018-0170
  27. Beckmann N, Becker KA, Kadow S, et al. Acid Sphingomyelinase Deficiency Ameliorates Farber Disease. Int J Mol Sci. 2019;20(24):6253. doi: 10.3390/ijms20246253
  28. Bernstein HS, Bishop DF, Astrin KH, et al. Fabry disease: six gene rearrangements and an exonic point mutation in the alpha-galactosidase gene. J Clin Invest. 1989;83(4):1390–1399. doi: 10.1172/JCI114027
  29. Beutler E, Gelbart T, Kuhl W, et al. Identification of the second common Jewish Gaucher disease mutation make possible population-based screening for the heterozygous state. PNAS. 1992;88(23):10544–10547. doi: 10.1073/pnas.88.23.10544
  30. Beutler E, Gelbart T, Kuhl W, et al. Mutations in Jewish patients with Gaucher disease. Blood. 1992;79(7):1662–1666. doi: 10.1182/blood.V79.7.1662.bloodjournal7971662
  31. Beutler E, Kay AC, Saven A, et al. Enzyme-replacement therapy for Gaucher’s disease. N Engl J Med. 1991;325:1809–1810.
  32. Bishop DF, Calhoun DH, Bernstein HS, et al. Human alpha-galactosidase A: nucleotide sequence of a cDNA clone encoding the mature enzyme. PNAS. 1986;83(13): 859–4863. doi: 10.1073/pnas.83.13.4859
  33. Bishop DF, Kornreich R, Desnick RJ. Structural organization of the human alpha-galactosidase A gene: further evidence for the absence of a 3-prime untranslated region. PNAS. 1988;85(11):3903–3907. doi: 10.1073/pnas.85.11.3903
  34. Brady RO, Schiffmann R. Clinical features of and recent advances in therapy for Fabry disease. JAMA. 2000;284(21):2771–2775. doi: 10.1001/jama.284.21.2771
  35. Brady RO, Kanfer JN, Schapiro D. Metabolism of glucocerebrosides. II. Evidence of an enzymatic deficiency in Gaucher’s disease. Biochem Biophys Res Commun. 1965;18(2):221–225. doi: 10.1016/0006-291X(65)90743-6
  36. Branton MH, Schiffmann R, Sabnis SG, et al. Natural history of Fabry renal disease: influence of alpha-galactosidase A activity and genetic mutations on clinical course. Medicine. 2002;81(2):122–138. doi: 10.1097/00005792-200203000-00003
  37. Cable WJL, McCluer RH, Kolodny EH, Ullman MD. Fabry disease: detection of heterozygotes by examination of glycolipids in urinary sediment. Neurology. 1982;32(10): 1139–1145. doi: 10.1212/WNL.32.10.1139
  38. Calhoun DH, Bishop DF, Bernstein HS, et al. Fabry disease: isolation of a cDNA clone encoding human alpha-galactosidase A. PNAS. 1985;82(21):7364–7368. doi: 10.1073/pnas.82.21.7364
  39. Capuano I, Garofalo C, Buonanno P, et al. Identifying Fabry patients in dialysis population: prevalence of GLA mutations by renal clinic screening, 1995–2019. J Nephrol. 2020;33:569–581. doi: 10.1007/s40620-019-00663-6
  40. Charrow J, Fraga C, Gu X, et al. Once- versus twice-daily dosing of eliglustat in adults with Gaucher disease type 1: the phase 3, randomized, double-blind EDGE trial. Mol Genet Metab. 2018;123(3):347–356. doi: 10.1016/j.ymgme.2017.12.001
  41. Christomanou H, Chabas A, Pampols T, Guardiola A. Activator protein deficient Gaucher’s disease: a second patient with the newly identified lipid storage disorder. Klin Wochenschr. 1989;67:999–1003. doi: 10.1007/BF01716064
  42. Clarke JTR. Narrative review: Fabry disease. Ann Intern Med. 2007;146(6):425–433. doi: 10.7326/0003-4819-146-6-200703200-00007
  43. Davies JP, Winchester BG, Malcolm S. Mutation analysis in patients with the typical form of Anderson–Fabry disease. Hum Molec Genet. 1993;2(7):1051–1053. doi: 10.1093/hmg/2.7.1051
  44. Desnick RJ, Dawson G, Desnick SJ, et al. Diagnosis of glycosphingolipidoses by urinary-sediment analysis. N Engl J Med. 1971;284:739–744. doi: 10.1056/NEJM197104082841401
  45. Devi ARR, Gopikrishna M, Ratheesh R, et al. Farber lipogranulomatosis: clinical and molecular genetic analysis reveals a novel mutation in an Indian family. J Hum Genet. 2006;51:811–814. doi: 10.1007/s10038-006-0019-z
  46. Dreborg S, Erikson A, Hagberg B. Gaucher disease — Norrbottnian type: I. General clinical description. Eur J Pediatr. 1980;133:107–118. doi: 10.1007/BF00441578
  47. Ehlert K, Frosch M, Fehse N, et al. Farber disease: clinical presentation, pathogenesis and a new approach to treatment. Pediatr Rheumatol Online J. 2007;5:15. doi: 10.1186/1546-0096-5-15
  48. Eng CM, Banikazemi M, Gordon RE, et al. A phase 1/2 clinical trial of enzyme replacement in Fabry disease: pharmacokinetic, substrate clearance, and safety studies. Am J Hum Genet. 2001;68(3):711–722. doi: 10.1086/318809
  49. Eng CM, Desnick RJ. Molecular basis of Fabry disease: mutations and polymorphisms in the human alpha-galactosidase A gene. Hum Mutat. 1994;3(2):103–111. doi: 10.1002/humu.1380030204
  50. Eng CM, Resnick-Silverman LA, Niehaus DJ, et al. Nature and frequency of mutations in the alpha-galactosidase A gene that cause Fabry disease. Am J Hum Genet. 1993;53:1186–1197.
  51. Enquist IB, Nilsson E, Ooka A, et al. Effective cell and gene therapy in a murine model of Gaucher disease. PNAS. 2006;103(37):13819–13824. doi: 10.1073/pnas.0606016103
  52. Fan J-Q, Ishii S, Asano N, Suzuki Y. Accelerated transport and maturation of lysosomal alpha-galactosidase A in Fabry lymphoblasts by an enzyme inhibitor. Nat Med. 1999;5:112–115. doi: 10.1038/4801
  53. Fan Y, Chan T-N, Chow JTY, et al. High prevalence of Late-Onset Fabry Cardiomyopathy in a cohort of 499 non-selective patients with left ventricular hypertrophy: the Asian Fabry cardiomyopathy high-risk screening study (ASIAN-FAME). J Clin Med. 2021;10(10):2160. doi: 10.3390/jcm10102160
  54. Fellgiebel A, Keller I, Marin D, et al. Diagnostic utility of different MRI and MR angiography measures in Fabry disease. Neurology. 2009;72(1):63–68. doi: 10.1212/01.wnl.0000338566.54190.8a
  55. Fink JK, Correll PH, Perry LK, et al. Correction glucocerebrosidase deficiency after retrovirus-mtdiated gene transfer into hematopoietic progenitor cells from patients with Gaucher disease. PNAS. 1990;87(6): 2334–2338. doi: 10.1073/pnas.87.6.2334
  56. Germain DP, Charrow J, Desnick RJ, et al. Ten-year outcome of enzyme replacement therapy with agalsidase beta in patients with Fabry disease. J Med Genet. 2015;52(5):353–358. doi: 10.1136/jmedgenet-2014-102797
  57. Germain DP, Weidemann F, Abiose A, et al. Analysis of left ventricular mass in untreated men and in men treated with agalsidase-beta: data from the Fabry Registry. Genet Med. 2013;15(12):958–965, doi: 10.1038/gim.2013.53
  58. Germain DP, Elliott PM, Falissard B, et al. The effect of enzyme replacement therapy on clinical outcomes in male patients with Fabry disease: A systematic literature review by a European panel of experts. Mol Genet Metab Rep. 2019;19:100454. doi: 10.1016/j.ymgmr.2019.100471
  59. Germain DP, Hughes DA, Nicholls K, et al. Treatment of Fabry’s Disease with the Pharmacologic Chaperone Migalastat. N Engl J Med. 2016;375(6):545–555. doi: 10.1056/NEJMOA1510198
  60. Golivets LT, Kruglova OV, Gusarova EA, et al. Fabry disease is a hereditary metabolic disease of the nervous system. Main clinical manifestations, problems of diagnosis and treatment. Nervous diseases Journal. 2016;1:36–46.
  61. Gravel RA, Leung A. Complementation analysis in Gaucher disease using single cell microassay techniques: evidence for a single ‘Gaucher gene’. Hum Genet. 1983;65:112–116. doi: 10.1007/BF00286645
  62. Han TU, Sam R, Sidransky E. Small Molecule Chaperones for the Treatment of Gaucher Diseas and GBA1-Associated Parkinson Disease. Front Cell Dev Biol. 2020;8:271. doi: 10.3389/fcell.2020.00271
  63. Harzer K, Paton BC, Poulos A, et al. Sphingolipid activator protein deficiency in a 16-week-old atypical Gaucher disease patient and his fetal sibling: biochemical signs of combined sphingolipidoses. Eur J Pediatr. 1989;149:31–39. doi: 10.1007/BF02024331
  64. Hong CM, Ohashi T, Yu XJ, et al. Sequence of two alleles responsible for Gaucher disease. DNA Cell Biol. 1990;9(4):233–241. doi: 10.1089/dna.1990.9.233
  65. Hopkin RJ, Bissler J, Banikazemi M, et al. Characterization of Fabry disease in 352 pediatric patients in the Fabry Registry. Ped Res. 2008;64:550–555. doi: 10.1203/PDR.0b013e318183f132
  66. Horowitz M, Wilder S, Horowitz Z, et al. The human glucocerebrosidase gene and pseudogene: stucture and evolution. Genomics. 1989;4(1):87–96. doi: 10.1016/0888-7543(89)90319-4
  67. Horowitz M, Zimran A. Mutations causing Gaucher disease. Hum Mutat. 1994;3(1):1–11. doi: 10.1002/humu.1380030102
  68. Houben E, Holleran WM, Yaginuma T, et al. Differentiation-associated expression of ceramidase isoforms in cultured keratinocytes and epidermis. J Lipid Res. 2006;47(5):1063–1070. doi: 10.1194/jlr.M600001-JLR200
  69. Hughes DA, Nicholls K, Shankar SP, et al. Oral pharmacological chaperone migalastat compared with enzyme replacement therapy in Fabry disease: 18-month results from the randomised phase III ATTRACT study. J Med Genet. 2017;54:288–296.
  70. Jung S-C, Han IP, Limaye A, et al. Adeno-associated viral vector-mediated gene transfer results in long-term enzymatic and functional correction in multiple organs of Fabry mice. PNAS. 2001;98(5):2676–2681. doi: 10.1073/pnas.051634498
  71. Koch J, Gartner S, Li C-M, et al. Molecular cloning and characterization of a full-length complementary DNA encoding human acid ceramidase: identification of the first molecular lesion causing Farber disease. J Biol Chem. 1996;271(51): 33110–33115. doi: 10.1074/jbc.271.51.33110
  72. Kornreich R, Bishop DF, Desnick RJ. The gene encoding alpha-galactosidase A and gene rearrangements causing Fabry disease. Trans Assoc Am Phys. 1989;102:30–43.
  73. Kostik MM, Chikova IA, Avramenko VV, et al. Farber lipogranulomatosis with predominant joint involvement mimicking juvenile idiopathic arthritis. J Inherit Metab Dis. 2013;36(6):1079–1080. doi: 10.1007/s10545-012-9573-z
  74. Lai L-W, Whitehair O, Wu M-J, et al. Analysis of splice-site mutations of the alpha-galactosidase A gene in Fabry disease. Clin Genet. 2003;63(6):476–482. doi: 10.1034/j.1399-0004.2003.00077.x
  75. Li C-M, Park J-H, He X, et al. The human acid ceramidase gene (ASAH): structure, chromosomal location, mutation analysis and expression. Genomics. 1999;62(2):223–231. doi: 10.1006/geno.1999.5940
  76. Liang K-H, Lu Y-H, Niu C-W, et al. The Fabry disease-causing mutation, GLA IVS4+919G>A, originated in Mainland China more than 800 years ago. J Hum Genet. 2020;65:619–625. doi: 10.1038/s10038-020-0745-7
  77. MacDermot KD, Holmes A, Miners AH. Anderson-Fabry disease: clinical manifestations and impact of disease in a cohort of 60 obligate carrier females. J Med Genet. 2001;38(11):769–807. doi: 10.1136/jmg.38.11.769
  78. Matsuzawa F, Aikawa S-i, Doi H, et al. Fabry disease: correlation between structural changes in α-galactosidase, and clinical and biochemical phenotypes. Hum Genet. 2005;117:317–328. doi: 10.1007/s00439-005-1300-5
  79. McCafferty EH, Scott LJ. Migalastat: A Review in Fabry Disease. Drugs. 2019;79(5):543–554. doi: 10.1007/s40265-019-01090-4
  80. Mehta A, Clarke JTR, Giugliani R, et al. Natural course of Fabry disease: changing pattern of causes of death in FOS — Fabry Outcome Survey. J Med Genet. 2009;46(8):548–552. doi: 10.1136/jmg.2008.065904
  81. Michaud M, Mauhin W, Belmatoug N, et al. When and How to Diagnose Fabry Disease in Clinical Pratice. Am J Med Sci. 2020;360(6):641–649. doi: 10.1016/j.amjms.2020.07.011
  82. Miller A, Brown LK, Pastores GM, Desnick RJ. Pulmonary involvement in type 1 Gaucher disease: functional and exercise findings in patients with and without clinical interstitial lung disease. Clin Genet. 2003;63(5): 368–376. doi: 10.1034/j.1399-0004.2003.00060.x
  83. Miller JJ, Kanack AJ, Dahms NM. Progress in the understanding and treatment of Fabry disease. Biochim Biophys Acta Gen Subj. 1864;(1):129437. doi: 10.1016/j.bbagen.2019.129437
  84. Mistry PK, Lukina E, Turkia HB, et al. Outcomes after 18 months of eliglustat therapy in treatment-naïve adults with Gaucher disease type 1: The phase 3 ENGAGE trial. Am J Hematol. 2017;92(11):1170–1176. doi: 10.1002/ajh.24877
  85. Mistry PK, Balwani M, Charrow J, et al. Real-world effectiveness of eliglustat in treatment-naïve and switch patients enrolled in the International Collaborative Gaucher Group Gaucher Registry. Am J Hematol. 2020;95(9):1038–1046. doi: 10.1002/ajh.25875
  86. Moore DF, Kaneski CR, Askari H, Schiffmann R. The cerebral vasculopathy of Fabry disease. J Neurol Sci. 2007;257(1–2):258–263. doi: 10.1016/j.jns.2007.01.053
  87. Muramatsu T, Sakai N, Yanagihara I, et al. Mutation analysis of the acid ceramidase gene in Japanese patients with Farber disease. J Inherit Metab Dis. 2002;25(7): 585–592. doi: 10.1023/A:1022047408477
  88. Nakao S, Kodama C, Takenaka T, et al. Fabry disease: detection of undiagnosed hemodialysis patients and identification of a ‘renal variant’ phenotype. Kidney Int. 2003;64(3):801–807. doi: 10.1046/j.1523-1755.2003.00160.x
  89. Nakao S, Takenaka T, Maeda M, et al. An atypical variant of Fabry’s disease in men with left ventricular hypertrophy. N Engl J Med. 1995;333:288–293. doi: 10.1056/NEJM199508033330504
  90. Nance CS, Klein CJ, Banikazemi M, et al. Later-onset Fabry disease: an adult variant presenting with the cramp-fasciculation syndrome. Arch Neurol. 2006;63(3):453–457. doi: 10.1001/archneur.63.3.453
  91. Nguyen TT, Gin T, Nicholls K, et al. Ophthalmological manifestations of Fabry disease: a survey of patients at the Royal Melbourne Fabry Disease Treatment Centre. Clin Exp Ophthalmol. 2005;33(2):164–168. doi: 10.1111/j.1442-9071.2005.00990.x
  92. Ohshima T, Murray GJ, Swaim WD, et al. Alpha-galactosidase A deficient mice: a model of Fabry disease. PNAS. 1997;94(6):2540–2544. doi: 10.1073/pnas.94.6.2540
  93. Ohshima T, Schiffmann R, Murray GJ, et al. Aging accentuates and bone marrow transplantation ameliorates metabolic defects in Fabry disease mice. PNAS. 1999;96(11): 6423–6427. doi: 10.1073/pnas.96.11.6423
  94. Pandey MK, Burrow TA, Rani R, et al. Complement drives glucosylceramide accumulation and tissue inflammation in Gaucher disease. Nature. 2017;543:108–112. doi: 10.1038/nature21368
  95. Park J-H, Schuchman EH. Acid ceramidase and human disease. Biochim Biophys Acta. 2006;1758(12): 2133–2138. doi: 10.1016/j.bbamem.2006.08.019
  96. Pastores GM, Thadhani R. Enzyme-replacement therapy for Anderson-Fabry disease. Lancet. 2001;358(9282): 601–603. doi: 10.1016/S0140-6736(01)05816-0
  97. Pentchev PG, Neumeyer B, Svennerholm L, et al. Immunological and catalytic quantitation of splenic glucocerebrosidase from the three clinical forms of Gaucher disease. Am J Hum Genet. 1983;35: 621–628.
  98. Polo G, Burlina AP, Ranieri E, et al. Plasma and dried blood spot lysosphingolipids for the diagnosis of different sphingolipidoses: a comparative study. Clin Chem Lab Med. 2019;57(12):1863–1874. doi: 10.1515/cclm-2018-1301
  99. Qin G, Takenaka T, Telsch K, et al. Preselective gene therapy for Fabry disease. PNAS. 2001;98(6): 3428–3433. doi: 10.1073/pnas.061020598
  100. Ramaswami U, Whybra C, Parini R, et al. Clinical manifestations of Fabry disease in children: data from the Fabry Outcome Survey. Acta Paediatr. 2006;95(1): 86–92. doi: 10.1080/08035250500275022
  101. Ries M, Zielonka M, Ries N, et al. Disasters in Germany and France: An Analysis of the Emergency Events Database from a Pediatric Perspective. Disaster Med Public Health Prep. 2019;13(5–6):958–965. doi: 10.1017/DMP.2019.24
  102. Rolfs A, Fazekas F, Grittner U, et al. Acute cerebrovascular disease in the young: the Stroke in Young Fabry Patients study. Stroke. 2013;44(2):340–349. doi: 10.1161/STROKEAHA.112.663708
  103. Rolfs A, Bottcher T, Zschiesche M, et al. Prevalence of Fabry disease in patients with cryptogenic stroke: a prospective study. Lancet. 2006;366(9499): 1794–1796. doi: 10.1016/S0140-6736(05)67635-0
  104. Schiffmann R. Fabry disease. Pharm Ther. 2009;122(1): 65–77. doi: 10.1016/j.pharmthera.2009.01.003
  105. Schiffmann R, Kopp JB, Austin HA III, et al. Enzyme replacement therapy in Fabry disease: a randomized controlled trial. JAMA. 2001;285(21):2743–2749. doi: 10.1001/jama.285.21.2743
  106. Schiffmann R, Murray GJ, Treco D, et al. Infusion of alpha-galactosidase A reduces tissue globotriaosylceramide storage in patients with Fabry disease. PNAS. 2000;97(1):365–370. doi: 10.1073/pnas.97.1.365
  107. Schiffmann R, Ries M, Blankenship D, et al. Changes in plasma and urine globotriaosylceramide levels do not predict Fabry disease progression over 1 year of agalsidase alfa. Genet Med. 2013;15(12):983–989. doi: 10.1038/gim.2013.56
  108. Schnabel D, Schroder M, Furst W, et al. Simultaneous deficiency of sphingolipid activator protein 1 and 2 is caused by a mutation in the initiation codon of their common gene. J Biol Chem. 1992;267:3312–3315. doi: 10.1016/S0021-9258(19)50733-5
  109. Schnabel D, Schroder M, Sandhoff K. Mutation in the sphingolipid activator protein-2 in a patient with variant of Gaucher disease. FEBS Lett. 1991;284(1): 57–59. doi: 10.1016/0014-5793(91)80760-Z
  110. Shafit-Zagardo B, Devine EA, Smith M, et al. Assignment of the gene for acid beta-glucosidase to human chromosome 1. Am J Hum Genet. 1981;33:564–575.
  111. Sidransky E, Bottler A, Stubblefield B, Ginns EI. DNA mutational analyses of type I and type 3 Gaucher patients: How well do mutation predicts phenotype? Hum Mutat. 1994;3(1):25–28. doi: 10.1002/humu.1380030105
  112. Sorge J, Kuhl W, West C, Beutler E. Complete correction of the enzymatic defects of type 1 Gaucher disease fibroblasts by retrovirus-mediated gene transfer. PNAS. 1987;84(4):906–909. doi: 10.1073/pnas.84.4.906
  113. Sorge J, West C, Westwood B, Beutler E. Molecular cloning and nucleotide sequence of human glucocerebrosidase cDNA. PNAS. 1985;82(21):7289–7293. doi: 10.1073/pnas.82.21.7289
  114. Spada M, Pagliardini S, Yasuda M, et al. High incidence of later-onset Fabry disease revealed by newborn screening. Am J Hum Genet. 2006;79(1):31–40. doi: 10.1086/504601
  115. Sun Y, Ran H, Zamzow M, et al. Specific saposin C deficiency: CNS impairment and acid beta-glucosidase effects in the mouse. Hum Mol Genet. 2010;19(4):634–647. doi: 10.1093/hmg/ddp531
  116. Tajima Y, Kawashima I, Tsukimura T, et al. Use of a modified alpha-N-acetylgalactosaminidase in the development of enzyme replacement therapy for Fabry disease. Am J Hum Genet. 2009;85(5):569–580. doi: 10.1016/j.ajhg.2009.09.016
  117. Takahashi H, Hirai Y, Migita M, et al. Long-term systemic therapy of Fabry disease in a knockout mouse by adeno-associated virus-mediated muscle-directed gene transfer. PNAS. 2002;99(21):13777–13782. doi: 10.1073/pnas.222221899
  118. Takenaka T, Murray GJ, Qin G, et al. Long-term enzyme correction and lipid reduction in multiple organs of primary and secondary transplanted Fabry mice receiving transduced bone marrow cells. PNAS. 2000;97(13): 7515–7520. doi: 10.1073/pnas.120177997
  119. Testai FD, Gorelick PB. Inherited metabolic disorders and stroke part 1: Fabry disease and mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes. Arch Neurol. 2010;67(1):19–24. doi: 10.1001/archneurol.2009.309
  120. Tsuji S, Choudary PV, Martin BM, et al. A mutation in the human glucocerebrosidase gene in neuronopathic Gaucher’s disease. N Engl J Med. 1987;316:570–575. doi: 10.1056/NEJM198703053161002
  121. Tylki-Szymanska A, Czartoryska B, Vanier M-T, et al. Non-neuronopathic Gaucher disease due to saposin C deficiency. Clin Genet. 2007;72(6):538–542. doi: 10.1111/j.1399-0004.2007.00899.x
  122. Van der Veen SJ, Hollak CEM, van Kuilenburg ABP, Langeveld M. Developments in the treatment of Fabry disease. J Inherit Metab Dis. 2020;43(5):908–921. doi: 10.1002/jimd.12228
  123. van Weely S, van den Berg M, Barranger JA, et al. Role of pH in determining the cell-type-specific residual activity of glucocerebrosidase in type I Gaucher disease. J Clin Invest. 1993;91(3):1167–1175. doi: 10.1172/JCI116276
  124. Vardarli I, Rischpler C, Herrmann K, Weidemann F. Diagnosis and Screening of Patients with Fabry Disease. Ther Clin Risk Manag. 2020;16:551–558. doi: 10.2147/TCRM.S247814
  125. Wagemaker G. Lentiviral Hematopoietic Stem Cell Gene Therapy in Inherited Immune and Lysosomal Enzyme Deficiencies. Cell Ther Transplant. 2016;5(4):56–62. doi: 10.18620/ctt-1866-8836-2016-5-4-56-62
  126. Walia JS, Neschadim A, Lopez-Perez O, et al. Autologous transplantation of lentivector/acid ceramidase-transduced hematopoietic cells in nonhuman primates. Hum Gene Ther. 2011;22(6):679–687. doi: 10.1089/hum.2010.195
  127. Walley AJ, Barth ML, Ellis I, et al. Gaucher’s disease in the United Kingdom: screening non-jewish patients for the two common mutations. J Med Genet. 1993;30(4):280–283. doi: 10.1136/jmg.30.4.280
  128. Wang RY, Lelis A, Mirocha J, Wilcox WR. Heterozygous Fabry women are not just carriers, but have a significant burden of disease and impaired quality of life. Genet Med. 2007;9(1):34–45. doi: 10.1097/GIM.0b013e31802d8321
  129. Wanner C, Arad M, Baron R, et al. European expert consensus statement on therapeutic goals in Fabry disease. Molec Genet Metab. 2018;124(3):189–203. doi: 10.1016/j.ymgme.2018.06.004
  130. Wilcox WR, Banikazemi M, Guffon N, et al. Long-term safety and efficacy of enzyme replacement therapy for Fabry disease. Am J Hum Genet. 2004;75(1): 65–74. doi: 10.1086/422366
  131. Yates P, Morse C, Standen GR. Gaucher’s disease and acquired coagulopathy. Clin Lab Haemat. 1992;14(4): 331–334. doi: 10.1111/j.1365-2257.1992.tb00109.x
  132. Zeidan HY, Pettus BJ, Elojeimy S, et al. Acid ceramidase but not acid sphingomyelinase is required for tumor necrosis factor induced PGE2 production. J Biol Chem. 2006;281(34):24695–24703. doi: 10.1074/jbc.M604713200
  133. Zimran A, Gelbart T, Westwood B, et al. High frequency of the Gaucher disease mutation at nucleotide 1226 among Ashkenazi Jews. Am J Hum Genet. 1991;49:855–859.

补充文件

附件文件
动作
1. JATS XML
2. Figure. Patient, 10 years old, Farber’s disease: a — general view of the patient (defiguration with massive conglomerates of the elbow, wrist, knee, ankle joints, small joints of the hands and feet); b and c — marked defiguration of the hands, deformity of all small joints of the hands, pronounced flexion contractures in the proximal interphalangeal joints; d — granulomas on the lateral surface of the tongue; e — X-ray of the hands; f — CT scan of the sacral spine, the presence of tumor formation coccygeal spine

下载 (418KB)

版权所有 © Gorbunova V., Buchinskaia N., Janus G., Kostik M., 2022

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可
 


##common.cookie##