Features of electrophysiological activity in a neonate with severe post-hypoxic brain damage (post-hypoxic cerebral depression)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article briefly presents the literature data and a description of the clinical dynamic observation of a patient with severe hypoxic brain damage (from the neonatal period to 4 months of life), in the conditions of the neonatal intensive care unit. The article describes the clinical picture, features of paroxysmal states and antiepileptic therapy, dynamics of neuroimaging data, electroencephalographic phenomena recorded in a patient with cerebral depression and structural cerebral injuries. The significance of electroencephalographic examination in the intensive care unit as an informative method for assessing cerebral activity in young children with central nervous system depression syndrome is shown. Disorganization of background activity, indicating structural cerebral damage, long-term persistence of slow-wave activity, detection of epileptic changes in the form of generalized flashes of pointed waves in the theta range, alpha-coma pattern, subsequently replaced by suppression of the background pattern in the patient, are typical electrophysiological disorders recorded in severe hypoxic encephalopathy. In conditions of limited opportunities for visual diagnosis of a patient with impaired consciousness, EEG remains the only method of obtaining information about the functional state of the brain, the data obtained during the study are an important prognostic criterion.

About the authors

Tatiana V. Melashenko

St. Petersburg State Pediatric Medical University Ministry of Health of the Russian Federation

Author for correspondence.
Email: melashenkotat@mail.ru

MD, PhD, Resident doctor, Neonatal intensive care unit

Russian Federation, St. Petersburg

Maria Y. Fomina

St. Petersburg State Pediatric Medical University Ministry of Health of the Russian Federation

Email: myfomina@mail.ru

MD, PhD, Dr. Sci. (Med.), Professor, Department Neonatology with Courses in Neurology and Obstetrics-Gynecologiya

Russian Federation, St. Petersburg

Alexander B. Palchik

St. Petersburg State Pediatric Medical University Ministry of Health of the Russian Federation

Email: xander57@mail.ru

MD, PhD, Dr. Sci. (Med.), Professor, Department Neonatology with Courses in Neurology and Obstetrics-Gynecologiya

Russian Federation, St. Petersburg

Olga I. Pavlova

St. Petersburg State Pediatric Medical University Ministry of Health of the Russian Federation

Email: eegenmg@mail.ru

Resident Doctor, Department of Functional Diagnostics

Russian Federation, St. Petersburg

References

  1. Жирмунская Е.А. Клиническая электроэнцефалография (обзор литературы и перспективы использования метода). – М.: Мэйби, 1991. – 118 с. [Zhirmunskaja EA. Klinicheskaya ehlektroehntsefalografiya (obzor literatury i perspektivy ispol’zovaniya metoda). Moscow: Mehibi; 1991. 118 p. (In Russ.)]
  2. Мелашенко Т.В., Фомина М.Ю. Изменения электробиологической активности головного мозга у доношенных новорожденных с гипоксически-ишемической энцефалопатией // Педиатр. – 2020. – Т. 11. – № 2. – C. 73–84. [Melashenko TV, Fomina MYu. Changes in the electrobiological activity of the brain in full-term newborns with hypoxic-ischemic encephalopathy. Pediatrician (St. Petersburg). 2020;11(2):73-84. (In Russ.)] https://doi.org/10.17816/PED11273-84.
  3. Мелашенко Т.В., Фомина М.Ю., Павлова О.И. Особенности межиктальной электрической активности головного мозга у доношенных новорожденных с судорожным синдромом при церебральной ишемии // Нейрохирургия и неврология детского возраста. – 2018. – № 3(57). – С 8–14. [Melashenko TV, Fomina MYu, Pavlova OI. Features of interictal brain activity in term infants with convulsive syndrome in cerebral ischemia. Neurosurgery and neurology of childhood. 2018;3(57):8-14. (In Russ.)]
  4. Понятишин А.Е., Пальчик А.Б. Электроэнцефалография в неонатальной неврологии. – Санкт-Петербург: Сотис, 2010. – 172 c. [Ponjatishin AE, Pal’chik AB. Ehlektroehntsefalografiya v neonatal’noi nevrologii. Saint Petersburg: Sotis; 2010. 172 p. (In Russ).]
  5. Фомина М.Ю., Мелашенко Т.В., Павлова О.И. Неонатальные судороги у доношенных новорожденных: клинико-электрофизиологические особенности // Педиатр. – 2018. – Т. 9. – № 5. – C. 13–20. [Fomina MY, MeLashenko TV, Pavlova OI. Neonatal seizures in term infants: clinical and electrophysiological features. Pediatrician (St. Petersburg). 2018;9(5):13-20 (In Russ.)] https://doi.org/10.17816/PED9513-20.
  6. Bauer G, Trinka E, Koplan PW. EEG patterns in hypoxic encephalopathies (post-cardiac arrest syndrome): fluctuations, transitions, and reactions. J Clin Neurophysiol. 2013;30(5):477-489. https://doi.org/10.1097/wnp.0b013e3182a73e47.
  7. Hagberg H, Edwards AD, Groenendaal F. Perinatal brain damage: The term infant. Neurobiol Dis. 2016;92(Pt A):102-112. https://doi.org/10.1016/j.nbd.2015.09.011.
  8. Simon RP, Aminoff MJ. Electrographic status epilepticus in fatal anoxic coma. Ann Neurol. 1986;20(3):351-355. https://doi.org/10.1002/ana.410200313.
  9. Westmoreland B, Klass DW, Sharbrough FW, Reagan TJ. Alpha-coma: electroencephalographic, clinical, pathologic and etiological correlations. Arch Neurol. 1975;32(11):713-718. https://doi.org/10.1001/archneur.1975.00490530035001.
  10. Wilson JA, Nordal HJ. EEG ved coma. Tidsskr Nor Legeforen. 2013;133(1):53-57. (In Norwegian.) https://doi.org/10.4045/tidsskr.11.1432.
  11. Wusthoff CJ, Sullivan S, Glass HC, et al. Interrater Agreement in the Interpretation of Neonatal Electroencephalography in Hypoxic Ischemic Encephalopathy. Epilepsia. 2017;58(3):429-435. https://doi.org/10.1111/epi.13661.
  12. Volpe J, Inder T, Darras B, et al. Volpe’s Neurology of the Newborn. 6th Edn. Elеsivier; 2017.
  13. Young GB, McLachlan RS, Kreeft JH, DeMelo JD. An electroencephalographic classification system for coma. Can J Neurol Sci. 1997;24(4):320-325. https://doi.org/10.1017/S0317167100032996.
  14. Young G.B. The EEG in Coma. J of Clin Neurophysiol. 2000;17(5):473-485. https://doi.org/10.1097/ 00004691-200009000-00006.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Patients brain, magnetic resonance imaging, front: a – T1 hyperintensity symmetric of basal nuclei; b–hippocampus, cortex and brain hypotrophy are evidence

Download (146KB)
3. Fig. 2. Patients brain, magnetic resonance imaging, sagittal. Abnormal T1 hyperintensity is presented at the level of thalamic (thin arrow), motor cortex (thick arrow)

Download (85KB)
4. Fig. 3 . Cranial ultrasound. Frontal scanner B-image

Download (137KB)
5. Fig. 4. Cranial ultrasound. Duplex of cerebral vessels. The results of measuring the velocity flows of the anterior cerebral arterya tendency to a restrictive type

Download (130KB)
6. Fig. 5. Electroencephalogram of a patient at the age 20 days. Ictal pattern

Download (181KB)
7. Fig. 6. Electroencephalogram of a patient in dynamics, age 23 days. Against the background of antiepileptic polytherapy, ictal patterns persist

Download (180KB)
8. Fig. 7. Electroencephalogram of a patient in dynamics, age 28 days. There are no epileptiform or focal changes. Motor phenomena were not accompanied by typical epileptic patterns

Download (136KB)
9. Fig. 8. Electroencephalogram of a patient at the age 28 days on the background of monotherapy with sodium valproate. Epileptiform and focal activity were not registered

Download (130KB)
10. Fig. 9. Electroencephalogram of a patient at the age 3 months. There is a suppression of the main rhythm, epileptiform activity and no focal changes

Download (143KB)

Copyright (c) 2020 Melashenko T.V., Fomina M.Y., Palchik A.B., Pavlova O.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies