Sexual differences of gut microbiome in infants and its clinical significance

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Numerous studies of the intestinal microbiome have shown its role in pathogenesis of diseases in children. However, the role of such a factor as the child’s gender is little taken into account in these studies.

AIM: The purpose of this study to identify the features of the intestinal microbiome composition of children aged 1 month, born vaginally and breastfed, depending on the child’s gender.

MATERIALS AND METHODS: the study included 103 children aged 4–6 weeks of life (group 1 — 46 girls, group 2 — 57 boys), examined at Professor Bushtyreva’s Clinic LLC from 2019 to 2020, each of whom underwent stool sampling for further sequencing of 16S rRNA.

RESULTS: Results of 16s rRNA sequencing revealed that the proportion of Erysipelatoclostridium bacteria, that predispose to the development of allergic reactions and inflammatory bowel diseases, was significantly higher in boys than in girls (12.52 and 0.2% respectively, p = 0.020). The proportion of Lachnoclostridium bacteria, high amounts of which are associated with resistance to diseases of the nervous system, also differed significantly in the groups of boys and girls (0.01 and 5.78% respectively, p = 0.046). Analysis of correlation matrices revealed that the correlation adaptometry coefficient in the group of boys was almost 4 times higher than in girls (9.5 and 2.4 respectively). Analysis of morbidity in children under one year old revealed that allergies were almost 3 times more common in boys than in girls (33.3 and 13%). Episodes of acute intestinal infections in the first year of life were registered in 6 boys and only in 1 girl (10.5 and 2.2%).

CONCLUSIONS: In boys at 1st month of life, born vaginally and breastfed, compared to girls, the proportion of bacteria of the genus Erysipelatoclostridium in the intestinal microbiome is higher, that is a risk factor for the development of allergic reactions and inflammatory bowel diseases. At the same time, the proportion of bacteria of the genus Lachnoclostridium, on the contrary, was 5 times higher in girls than in boys. The revealed differences can be used to select preventive probiotic therapy taking into account the child’s gender.

About the authors

Victoria V. Barinova

Professor Bushtyreva Clinic LLC

Author for correspondence.
Email: victoria-barinova@yandex.ru
ORCID iD: 0000-0002-8584-7096
SPIN-code: 5068-0680

MD, PhD, Deputy Director, obstetrician-gynecologist

Russian Federation, 58/7 Sobornyi lane, Rostov-on-Don, 344011

Dmitry O. Ivanov

St. Petersburg State Pediatric Medical University

Email: spb@gpma.ru
ORCID iD: 0000-0002-0060-4168
SPIN-code: 4437-9626

MD, PhD, Dr. Sci. (Medicine), Professor, Head of the Department of Neonatology with Courses in Neurology and Obstetrics-Gynecology of the Faculty of Postgraduate and Additional Professional Education, Rector

Russian Federation, Saint Petersburg

Irina O. Bushtyreva

Professor Bushtyreva Clinic LLC

Email: kio4@mail.ru
ORCID iD: 0000-0001-9296-2271
SPIN-code: 5009-1565

доктор медицинских наук, профессор, директор

Russian Federation, 58/7 Sobornyi lane, Rostov-on-Don, 344011

Tatyana L. Botasheva

Rostov State Medical University

Email: t_botasheva@mail.ru
ORCID iD: 0000-0001-5136-1752
SPIN-code: 3341-2928

MD, PhD, Dr. Sci. (Medicine), Professor, Chief Researcher of the Obstetrics and Gynecology Department of the Research Institute of Obstetrics and Pediatrics

Russian Federation, Rostov-on-Don

Vasilisa V. Dudurich

Serbalab Medical-genetic center

Email: vasilisadudurich@yandex.ru
ORCID iD: 0000-0002-6271-5218

Head of the Department of Metagenomic Research

Russian Federation, Saint Petersburg

Lavrentii G. Danilov

Serbalab Medical-genetic center

Email: lavrentydanilov@gmail.com
ORCID iD: 0000-0002-4479-3095
SPIN-code: 7424-8745

bioinformatician of the laboratory

Korea, Republic of, Saint Petersburg

References

  1. Botasheva TL, Andreeva VO, Rymashevskiy AN, et al. The role of fetal gender in the pathogenesis of gestational diabetes mellitus and obstetric complications. Obstetrics and Gynecology. 2022;(9):33–41. EDN: EUEXNL doi: 10.18565/aig.2022.9.33-41
  2. Botasheva TL, Rymashevsky AN, Fabrikant AD, et al. Features of the glycemic status, pro- and contrinsular factors in pregnant women with gestational diabetes mellitus, depending on the gender of the fetus. Glavnyi vrach Uga Russia. 2022;(1):6–9. EDN: OGMFOJ
  3. Gorban AN, Manchuk VT, Petushkova EV. Dynamics of correlations between physiological parameters during adaptation and ecological-evolutionary principle of polyfactoriality. In: Problems of ecological monitoring and modeling of ecosystems. Leningrad: Gosmeteoizdat, 1987. P. 187–198. (In Russ.)
  4. Pechkurov DV, Turti TV, Belyaeva IA, Tjazheva AA. Intestinal microflora in children: from formation disturbances prophylaxis to preventing non-infectious diseases. Pediatric pharmacology. 2016;13(4):377–381. EDN: WQSIPF doi: 10.15690/pf.v13i4.1611
  5. Pokidysheva LI, Ignatova IA. Correlative adaptometry and the principal component method in estimation of adaptative opportunities of immune system. System analysis and control in biomedical systems. 2011;10(1):152–157. EDN: NDOSQZ
  6. Svetlichnaya GN, Smirnova EV, Pokidysheva LI. Correlation adaptometry as a method of assessment of cardiovascular and respiratory interaction. Human Physiology. 1997;23(3):58–62. EDN: TIKWUZ (In Russ.)
  7. Sedov KR, Gorban AN, Petushkova EV, et al. Correlation adaptometry as a method of population dispenserization. Bulletin of the USSR Academy of Medical Sciences. 1988;(10):69–75. EDN: RBHXEH (In Russ.)
  8. Usenko DV, Ploskireva AA, Gorelov AV. Children acute enteric infections in paediatrician practice: possibilities of diagnostics and therapy. Current pediatrics (Moscow). 2014;13(3):12–20. EDN: SHWORB
  9. Fabrikant AD, Botasheva TI, Rymashevsky AN, et al. The fetus gender value in the structure of obstetric pathology in pregnant women with gestational diabetes mellitus. Medical Herald of the South of Russia. 2021;12(4):20–26. EDN: ORJWJZ doi: 10.21886/2219-807 5-2021-12-4-20-26
  10. Kharitonova LA, Grigoriev KI, Papysheva OV, Borzakova SN. Microbiota and child health: objectives of medical practice. Russian bulletin of perinatology and pediatrics. 2022;67(1):5–13. EDN: AVAIOP doi: 10.21508/1027-4065-2022-67-1-5-13
  11. Balakrishnan B, Luckey D, Wright K, et al. Eggerthella lenta augments preclinical autoantibody production and metabolic shift mimicking senescence in arthritis. Sci Adv. 2023;9(35):eadg1129. doi: 10.1126/sciadv.adg1129
  12. Callahan BJ, McMurdie PJ, Rosen MJ, et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–583. doi: 10.1038/nmeth.3869
  13. Chen J, Li H, Maas K, et al. Sex-specific gut microbiome profiles among preterm infants during the neonatal intensive care hospitalization. Interdiscip Nurs Res. 2022;1(1):6–13. doi: 10.1097/NR9.0000000000000004
  14. Cong X, Xu W, Janton S, et al. Gut microbiome developmental patterns in early life of preterm infants: impacts of feeding and gender. PloS One. 2016;11:e0152751. doi: 10.1371/journal.pone.0152751
  15. Gao M, Wang J, Liu P, et al. Gut microbiota composition in depressive disorder: a systematic review, meta-analysis, and meta-regression. Transl Psychiatry. 2023;13(1):379. doi: 10.1038/s41398-023-0267 0-5
  16. Gupta VK, Paul S, Dutta C. Geography, ethnicity or subsistence-specific variations in human microbiome composition and diversity. Front Microbiol. 2017;8:1162. doi: 10.3389/fmicb.2017.01162
  17. Iacono G, Merolla R, D’Amico D, et al. Gastrointestinal symptoms in infancy: a population-based prospective study. Dig Liver Dis. 2005;37(6):432–438. doi: 10.1016/j.dld.2005.01.009
  18. Kanchongkittiphon W, Nopnipa S, Mathuranyanon R, et al. Characterization of gut microbiome profile in children with confirmed wheat allergy. Asian Pac J Allergy Immunol. 2024. doi: 10.12932/AP-080623-1626
  19. Manchia M, Paribello P, Pisanu C, et al. A pilot interaction analysis of gut microbiota and peripheral markers of aging in severe psychiatric disorders: a role for Lachnoclostridium? Int J Mol Sci. 2023;24(24):17618. doi: 10.3390/ijms242417618
  20. Ning L, Zhou Y-L, Sun H, et al. Microbiome and metabolome features in inflammatory bowel disease via multi-omics integration analyses across cohorts. Nat Commun. 2023;14(1):7135. doi: 10.1038/s41467-023-4 2788-0
  21. Olaguez-Gonzalez JM, Chairez I, Breton-Deval L, Alfaro-Ponce M. Machine learning algorithms applied to predict autism spectrum disorder based on gut microbiome composition. Biomedicines. 2023;11(10):2633. doi: 10.3390/biomedicines11102633
  22. Patterson E, Ryan PM, Cryan JF, et al. Gut microbiota, obesity and diabetes. Postgrad Med J. 2016;92(1087):286–300. doi: 10.1136/postgradmedj-2015-133285
  23. Qiong W, Garrity MG, Tiedje MJ, Cole RJ. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73(16):5261–5267. doi: 10.1128/AEM.00062-07
  24. Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013;41(D1):D590–D596. doi: 10.1093/nar/gks1219
  25. Rinninella E, Raoul P, Cintoni M, et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms. 2019;7(1):14. doi: 10.3390/microorganisms7010014
  26. Seki D, Mayer M, Hausmann B, et al. Aberrant gut-microbiota-immune-brain axis development in premature neonates with brain damage. Cell Host Microbe. 2021;29(10):1558–1572.e6. doi: 10.1016/j.chom.2021.08.004
  27. Shao D, Liu L, Tong H, Shi S. Dietary pyrroloquinoline quinone improvement of the antioxidant capacity of laying hens and eggs are linked to the alteration of Nrf2/HO-1 pathway and gut microbiota. Food Chem X. 2023;20:101021. doi: 10.1016/j.fochx.2023.101021
  28. Simonyté Sjödin K, Hammarström M-L, Rydén P, et al. Temporal and long-term gut microbiota variation in allergic disease: A prospective study from infancy to school age. Allergy. 2019;74(1):176–185. doi: 10.1111/all.13485
  29. Wang Y, Hou J, Tsui JC-C, et al. Unique gut microbiome signatures among adult patients with moderate to severe atopic dermatitis in Southern Chinese. Int J Mol Sci. 2023;24(16):12856. doi: 10.3390/ijms241612856
  30. Zhang B, Zhang X, Luo Z, et al. Microbiome and metabolome dysbiosis analysis in impair ed glucose tolerance for the prediction of progression to diabetes mellitus. J Genet Genomics. 2023;51(1): 75–86. doi: 10.1016/j.jgg.2023.08.005
  31. Zhao D, Zou L, Lei X, Zhang Y. Gender differences in infant mortality and neonatal morbidity in mixed-gender twins. Sci Rep. 2017;7(1):8736. doi: 10.1038/s41598-017-08951-6
  32. Zhu X, Cai J, Wang Y, et al. A high-fat diet increases the characteristics of gut microbial composition and the intestinal damage associated with non-alcoholic fatty liver disease. Int J Mol Sci. 2023;24(23):16733. doi: 10.3390/ijms242316733

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Range diagram of the relative abundance of bacteria of the genus Erysipelatoclostridium ( а ) and Lachnoclostridium ( b ) in the intestinal microbiota of girls (0) and boys (1). The thick line inside denotes the median of each group, the bottom and top of the box are the 25 th and 75 th percentiles, respectively. “Whiskers” is a minimum and maximum value that is not extreme

Download (34KB)
3. Fig. 2. Correlogram of relationships between bacterial genus isolated in 16S rRNA sequencing in the intestinal microbiome of girls in group 1. The dominant bacterial genus in the gut microbiome are shown in red color, based on their mean relative abundance in girls. The black solid directions indicate positive correlations, and the number above the arrow indicates the strength of the correlation

Download (96KB)
4. Fig. 3. Correlogram of relationships between bacterial genera isolated in 16S rRNA sequencing in the intestinal microbiome in group 2 in boys. The dominant bacterial genus in the gut microbiome are shown in red color, based on their mean relative abundance in boys. Black solid arrows indicate positive correlations, red dashed arrows indicate negative correlations, and the number above the arrow indicates the strength of the correlation

Download (96KB)
5. Fig. 4. ROC curve: а, for the group 1 (girls); b, for the observation group 2 (boys). The top line is the ROC curve, the bottom line is the reference line

Download (61KB)

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».