Navigation template for vertebral pedicle passage in transpedicular screw fixation

Cover Page

Cite item

Full Text

Abstract

Transpedicular screw fixation is the most established means to stabilize the spine. Present study evaluates personalized navigation templates application for vertebral pedicle passage. Navigation templates were used for inserting 35 transpedicular screws in 5 patients with spinal deformity (age 2–16). Each patient underwent computed tomography preoperatively. Acquired data was processed into a virtual 3d-model of target zone. Life size virtual pedicular probes were placed onto transpedicular trajectories determined on multiplanar cross-sections of the model. Navigation template was created by modification and union of geometric primitives. Target zone model and navigation template were made with PLA by 3D-printer. In surgery the template was placed on skeletonized posterior surface of appropriate vertebrae. After confirmation of template stability trajectories were passed to a depth of 20 mm through guiding tubes by pedicular probe. Resulting channels were controlled with ball tip feeler, and the full depth trajectories were made by free hand technique. Postoperatively screws placement accuracy was assessed by plain X-rays in each patient. Two patients (16 screws) also underwent computed tomography. In these patients screw placement accuracy was assessed by system based on 2 mm breach increments. 15 screws (93. 7%) were fully contained within the pedicle (grade 0), 1 screw breached external cortex of the pedicle by 0. 8 mm (grade 1). Efficacy and safety of navigation template for transpedicular screws insertion was demonstrated.

About the authors

Artem V. Kosulin

St. Petersburg State Pediatric Medical University, Ministry of Healthcare of the Russian Federation

Author for correspondence.
Email: hackenlad@mail.ru

Assistant Professor, Department of Operative Surgery and Topographic Anatomy

Russian Federation, Saint Petersburg

Dmitriy V. Elyakin

St. Petersburg State Pediatric Medical University, Ministry of Healthcare of the Russian Federation

Email: dimaelkins@mail.ru

Pediatric Surgeon, Surgical Department No. 2

Russian Federation, Saint Petersburg

Kristina D. Lebedeva

St. Petersburg State Pediatric Medical University, Ministry of Healthcare of the Russian Federation

Email: moon2807@mail.ru

Student, Department of Operative Surgery and Topographic Anatomy

Russian Federation, Saint Petersburg

Aleksandra E. Sukhomlinova

St. Petersburg State Pediatric Medical University, Ministry of Healthcare of the Russian Federation

Email: alexsashashmlmv@gmail.com

Student, Department of Operative Surgery and Topographic Anatomy

Russian Federation, Saint Petersburg

Ekaterina A. Kozlova

St. Petersburg State Pediatric Medical University, Ministry of Healthcare of the Russian Federation

Email: kea13doc@gmail.com

Student, Department of Operative Surgery and Topographic Anatomy

Russian Federation, Saint Petersburg

Anna E. Orekhova

St. Petersburg State Pediatric Medical University, Ministry of Healthcare of the Russian Federation

Email: myzikanya@mail.ru

Student, Department of Operative Surgery and Topographic Anatomy

Russian Federation, Saint Petersburg

References

  1. Бурцев А.В., Павлова О.М., Рябых С.О., Губин А.В. Компьютерное 3D-моделирование с изготовлением индивидуальных лекал для навигирования введения винтов в шейном отделе позвоночника // Хирургия позвоночника. – 2018. – Т. 15. – № 2. – С. 33–38. [Burtsev AV, Pavlova OM, Ryabykh SO, Gubin AV. Computer 3D-modeling of patient-specific navigational template for cervical screw insertion. Spine surgery. 2018;15(2):33-38. (In Russ.)]. https://doi.org/10. 14531/ss2018. 2. 33-38.
  2. Кокушин Д.Н., Виссарионов С.В., Баиндурашвили А.Г., и др. Сравнительный анализ положения транспедикулярных винтов у детей с врожденным сколиозом: метод «свободной руки» (in vivo) и шаблоны-направители (in vitro) // Травматология и ортопедия России. – 2018. – Т. 24. – № 4. – С. 53–63. [Kokushin DN, Vissarionov SV, Baindurashvili AG, et al. Comparative analysis of pedicle screw placement in children with congenital scoliosis: freehand technique (in vivo) and guide templates (in vitro). Travmatologiia i ortopediia Rossii. 2018;24(4):53-63. (In Russ.)]. https://doi.org/10. 21823/2311-2905-2018-24-4-53-63.
  3. Aoude AA, Fortin M, Figueiredo R, et al. Methods to determine pedicle screw placement accuracy in spine surgery: a systematic review. Eur Spine J. 2015;24(5):990-1004. https://doi.org/10. 1007/s00586-015-3853-x.
  4. Azimifar F, Hassani K, Saveh AH, Ghomsheh FT. A medium invasiveness multi-level patient’s specific template for pedicle screw placement in the scoliosis surgery. Biomed Eng Online. 2017;16(1):130. https://doi.org/10. 1186/s12938-017-0421-0.
  5. Deng T, Jiang M, Lei Q, et al. The accuracy and the safety of individualized 3D printing screws insertion templates for cervical screw insertion. Comput Assist Surg (Abingdon). 2016;21(1):143-149. https://doi.org/10. 1080/24699322. 2016. 1236146.
  6. Fan Y, Du J, Zhang J, et al. Comparison of accuracy of pedicle screw insertion among 4 guided technologies in spine surgery. Med Sci Monit. 2017;23:5960-5968. https://doi.org/10. 12659/msm.905713.
  7. Floccari LV, Larson AN, Stans AA, et al. Delayed dural leak following posterior spinal fusion for idiopathic scoliosis using all posterior pedicle screw technique. J Pediatr Orthop. 2017;37(7):e415-e420. https://doi.org/10. 1097/BPO.0000000000001008.
  8. Gautschi OP, Schatlo B, Schaller K, Tessitore E. Clinically relevant complications related to pedicle screw placement in thoracolumbar surgery and their management: a literature review of 35,630 pedicle screws. Neurosurg Focus. 2011;31(4):E8. https://doi.org/10. 3171/2011. 7. FOCUS11168.
  9. Guo F, Dai J, Zhang J, et al. Individualized 3D printing navigation template for pedicle screw fixation in upper cervical spine. PLoS One. 2017;12(2):e0171509. https://doi.org/10. 1371/journal.pone.0171509.
  10. Kaneyama S, Sugawara T, Sumi M. Safe and accurate midcervical pedicle screw insertion procedure with the patient-specific screw guide template system. Spine (Phila Pa 1976). 2015;40(6): E341-348. https://doi.org/10. 1097/BRS.0000000000000772.
  11. Kaneyama S, Sugawara T, Sumi M, et al. A novel screw guiding method with a screw guide template system for posterior C-2 fixation: clinical article. J Neurosurg Spine. 2014;21(2):231-238. https://doi.org/10. 3171/2014. 3. SPINE13730.
  12. Kwan MK, Chiu CK, Chan CYW, et al. The use of fluoroscopic guided percutaneous pedicle screws in the upper thoracic spine (T1-T6): Is it safe? J Orthop Surg (Hong Kong). 2017;25(2):2309499017722438. https://doi.org/10. 1177/2309499017722438.
  13. Li F, Huang X, Wang K, et al. Preparation and assessment of an individualized navigation template for lower cervical anterior transpedicular screw insertion using a three-dimensional printing technique. Spine (Phila Pa 1976). 2018;43(6): E348-E356. https://doi.org/10. 1097/BRS.0000000000002341.
  14. Lu S, Zhang YZ, Wang Z, et al. Accuracy and efficacy of thoracic pedicle screws in scoliosis with patient-specific drill template. Med Biol Eng Comput. 2012;50(7):751-8. https://doi.org/10. 1007/s11517-012-0900-1.
  15. Lu T, Liu C, Dong J, et al. Cervical screw placement using rapid prototyping drill templates for navigation: a literature review. Int J Comput Assist Radiol Surg. 2016;11(12):
  16. -40. https://doi.org/10. 1007/s11548-016-1414-3.
  17. Merc M, Drstvensek I, Vogrin M, et al. Error rate of multi-level rapid prototyping trajectories for pedicle screw placement in lumbar and sacral spine. Chin J Traumatol. 2014;17(5):261-266.
  18. Pu X, Luo C, Lu T, et al. Clinical application of atlantoaxial pedicle screw placement assisted by a modified 3D-printed navigation template. Clinics (Sao Paulo). 2018;73:e259. https://doi.org/10. 6061/clinics/2018/e259.
  19. Shao ZX, He W, He SQ, et al. A 3D navigation template for guiding a unilateral lumbar pedicle screw with contralateral translaminar facet screw fixation: a study protocol for multicentre randomised controlled trials. BMJ Open. 2017;7(7):e016328. https://doi.org/10. 1136/bmjopen-2017-016328.
  20. Shimizu T, Fujibayashi S, Takemoto M, et al. A multi-center study of reoperations within 30 days of spine surgery. Eur Spine J. 2016;25(3):828-835. https://doi.org/10. 1007/s00586-015-4113-9.
  21. Sugawara T, Kaneyama S, Higashiyama N, et al. Prospective multicenter study of a multistep screw insertion technique using patient-specific screw guide templates for the cervical and thoracic spine. Spine (Phila Pa 1976). 2018;43(23):1685-1694. https://doi.org/10. 1097/BRS.0000000000002810.
  22. Sugawara T, Higashiyama N, Kaneyama S, Sumi M. Accurate and simple screw insertion procedure with patient-specific screw guide templates for posterior C1-C2 fixation. Spine (Phila Pa 1976). 2017;42(6):E340-E346. https://doi.org/10. 1097/BRS.0000000000001807.
  23. Tsai TT, Lee SH, Niu CC, et al. Unplanned revision spinal surgery within a week: a retrospective analysis of surgical causes. BMC Musculoskelet Disord. 2016;17:28. https://doi.org/10. 1186/s12891-016-0891-4.
  24. Wang F, Li CH, Liu ZB, et al. The effectiveness and safety of 3-dimensional printed composite guide plate for atlantoaxial pedicle screw: a retrospective study. Medicine (Baltimore). 2019;98(1):e13769. https://doi.org/10. 1097/MD.0000000000013769.
  25. Wang X, Shi J, Zhang S, et al. Pediatric lumbar pedicle screw placement using navigation templates: a cadaveric study. Indian J Orthop. 2017;51(4):468-473. https://doi.org/10. 4103/0019-5413. 209955.
  26. Waschke A, Walter J, Duenisch P, et al. CT-navigation versus fluoroscopy-guided placement of pedicle screws at the thoracolumbar spine: single center experience of 4,500 screws. Eur Spine J. 2013;22(3):654-660. https://doi.org/10. 1007/s00586-012-2509-3.
  27. Woo EJ, DiCuccio MN. Clinically significant pedicle screw malposition is an underestimated cause of radiculopathy. Spine J. 2018;18(7):1166-1171. https://doi.org/10. 1016/j.spinee.2017. 11. 006.
  28. Wu HH, Su IC, Hsieh CT, et al. Accuracy and safety of using customized guiding templates for cervical pedicle screw insertion in severe cervical deformity, fracture, and subluxation: a retrospective study of 9 cases. World Neurosurg. 2018;116:e1144-e1152. https://doi.org/10. 1016/j.wneu.2018. 05. 188.
  29. Zhang G, Yu Z, Chen X, et al. Accurate placement of cervical pedicle screws using 3D-printed navigational templates: an improved technique with continuous image registration. Orthopade. 2018;47(5):428-436. https://doi.org/10. 1007/s00132-017-3515-2.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Virtual models of target zone and navigation template

Download (132KB)
3. Fig. 2. 3D-printed target zone model and navigation templates

Download (121KB)
4. Fig. 3. Navigation template assisted pedicle passage on surgery

Download (119KB)

Copyright (c) 2019 Kosulin A.V., Elyakin D.V., Lebedeva K.D., Sukhomlinova A.E., Kozlova E.A., Orekhova A.E.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies