Antioxidant system and lipid peroxidation in rat erythrocytes under low-dose exposure to mercury acetate

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Low-dose exposure of mercury compounds to the human body for a long time leads to the accumulation of a toxicant in tissues, causing damage to health. Mercury can be delivered to a developing fetus through the placenta or to an infant through breast milk. Erythrocytes are the preferred cell for mercury accumulation, reaching a concentration 20 times higher than the concentration in blood plasma. Erythrocytes have powerful antioxidant protection. The antioxidant protection system of the cell plays an important role in maintaining of homeostasis in the cell. Despite of the apparent vastness of researches of the antioxidant system and lipid peroxidation, changes after subacute poisoning with heavy metals have not been sufficiently studied.

AIM: Study changes in biochemical parameters in Wistar rats erythrocytes with subacute poisoning with mercury acetate.

MATERIALS AND METHODS: 30 days and 44 days after the administration of mercury acetate at a dose of 4 mg/kg in the hemolysate of red blood cells of rats, the indicators of the antioxidant system and lipid peroxidation were determined.

RESULTS: The administration of mercury acetate for 30 days significantly increased the activity of SOD, GP and reduced the activity of GT. An increase of DC concentration was noted. 14 days after the end of the injection of the toxicant, the imbalance of the AOS enzyme link persists. An increase of DC and MDA concentrations was revealed.

CONCLUSIONS: The data obtained demonstrate a violation of the antioxidant balance in erythrocytes after a 30-day administration of mercury acetate. 14 days after the end of the injection of the toxicant, changes in the enzyme link of AOS persist. Intensification of the processes of lipoperoxidation of erythrocyte membranes has been established. In the delayed period after poisoning, there is a tendency to disturbance the balance of AOS of erythrocytes, the intensity of LPO processes increases.

About the authors

Kristina M. Shchepetkova

St. Petersburg State Pediatric Medical University

Email: tesh_07@inbox.ru

Postgraduate student of the Department of Biological Chemistry

Russian Federation, Saint Petersburg

Ekaterina G. Batotsyrenova

St. Petersburg State Pediatric Medical University; Golikov Research Clinical Center of Toxicology, Federal Medical Biological Agency

Email: bkaterina2009@yandex.ru

PhD, Associate Professor, Biological Chemistry Department; Leading Researcher, Biochemical Toxicology and Pharmacology Laboratory

Russian Federation, Saint Petersburg; Saint Petersburg

Lyubov A. Litvinenko

St. Petersburg State Pediatric Medical University

Email: lyublitvin@inbox.ru

MD, PhD, Associate Professor of the Department of Biological Chemistry

Russian Federation, Saint Petersburg

Natalia P. Ramenskaya

St. Petersburg State Pediatric Medical University

Email: n_ramenskaia@mail.ru

PhD, Associate Professor of the Department of Biological Chemistry

Russian Federation, Saint Petersburg

Vadim A. Kashuro

St. Petersburg State Pediatric Medical University; Herzen State Pedagogical University of Russia; Saint Petersburg State University

Author for correspondence.
Email: kashuro@yandex.ru

MD, Dr. Med. Sci., Associate Professor, Head of the Department of Biological Chemistry; Professor of the Department of Anatomy and Physiology of Animals and Humans; Professor of the Department of Maxillofacial Surgery and Surgical Dentistry

Russian Federation, Saint Petersburg; Saint Petersburg; Saint Petersburg

References

  1. Alekseev VV, Alipov AN, Karpishchenko AI. Meditsinskie laboratornye tekhnologii: Rukovodstvo po klinicheskoi laboratornoi diagnostike v 2-kh tomakh. Vol. 2. Moscow: GEHOTAR-Media, 2013. 792 p. (In Russ.)
  2. Batotsyrenova EG, Kostrova TA, Zhilyaeva EKh, Kashuro VA. Izmenenie pokazatelei antioksidantnoi sistemy pri ostrom tyazhelom otravlenii tiopentalom natriya v otdalennyi period v usloviyakh desinkhronoza. Proceeding of the All-Russian conference with international participation «Okislitel’nyi stress v psikhiatrii i nevrologii». 2016 Oct 20–21, Saint Petersburg. P. 19–20. (In Russ.)
  3. Galkina OV, Eshchenko ND. Svobodnoradikal’nye protsessy v biologii: uchebnoe posobie. Moscow, Saint Petersburg: Tovarishchestvo nauchnykh izdanii KMK, 2020. 393 p. (In Russ.)
  4. Danilova LA, Basharina OB, Krasnikova EN, et al. Spravochnik po laboratornym metodam issledovaniya. Moscow: Piter, 2003. (In Russ.)
  5. Kalinina EV, Chernov NN, Novichkova MD. Rol glutationa, glutationtransferazy i glutaredoksina v regulyatsii redoks-zavisimykh protsessov. Uspekhi biologicheskoi khimii. 2014;54:299–348. (In Russ.)
  6. Kashuro VA, Kozlov VK. Biochemical aspects of experimental toxicology: tradition and innovation. Medline.ru. Rossiiskii biomeditsinskii zhurnal. 2020;21: 1248–1268. (In Russ.)
  7. Kashuro VA. Sistema glutationa i perikisnoe okislenie lipidov v patogeneze ostrykh tyazhelykh intoksikatsii tsiklofosfanom [dissertation]. Saint Petersburg, 2003. (In Russ.)
  8. Kutsenko SA, Lutsyk MA, Mel’nichuk VP. Toksikologiya metallov. Saint Petersburg: RMMA, 2000. (In Russ.)
  9. Rusetskaya NYu, Borodulin VB. Biological activity of selenorganic compounds at heavy metal salts intoxication. Biomeditsinskaya Khimiya. 2015;61(4):449–461. (In Russ.) doi: 10.18097/PBMC20156104449
  10. Shilov VV, Lukin VA, Savello VE, et al. Clinical follow-up of a patient after intravenous injection of elemental mercury with suicidal purpose. Toxicological Review. 2015;(4):44–48 (In Russ.)
  11. Adedara IA, Ebokaiwe AP, Farombi EO. Tissues distribution of heavy metals and erythrocytes antioxidant status in rats exposed to Nigerian bonny light crude oil. Toxicol Ind Health. 2011;29(2):162–168. doi: 10.1177/0748233711427049
  12. Al osman M, Yang F, Massey IY. Exposure routes and health effects of heavy metals on children. Biometals. 2019;32:563–573. doi: 10.1007/s10534-019-00193-5
  13. Altman DG, Bland MJ. How to randomize. Br Med J. 1999;319:703–704. doi: 10.1136/bmj.319.7211.703
  14. Balali-Mood M, Naseri K, Tahergorabi Z, et al. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front Pharmacol. 2021;12:643–972. doi: 10.3389/fphar.2021.643972
  15. Carocci A. Mercury toxicity and neurodegenerative effects. Rev Environ Contam Toxicol. 2014;229:1–18. doi: 10.1007/978-3-319-03777-6_1
  16. Clarkson TW, Magos L. The Toxicology of Mercury and Its Chemical Compounds. Crit Rev Toxicol. 2006;36(8): 609–662. doi: 10.1080/10408440600845619
  17. Clarkson TW, Vyas JB, Ballatori N. Mechanisms of mercury disposition in the body. Am J Ind Med. 2007;50(10):757–764. doi: 10.1002/ajim.20476
  18. Crespo-Lopez ME, Augusto-Oliveira M, Lopes-Araújo A, et al. Mercury: What can we learn from the Amazon? Environ Int. 2021;146:106–223. doi: 10.1016/j.envint.2020.106223
  19. Dabeka R, McKenzie AD, Forsyth DS, Conacher HBS. Survey of total mercury in some edible fish and shellfish species collected in Canada in 2002. Food Addit Contam. 2004;21(5):434–440. doi: 10.1080/02652030410001670184
  20. Doering S, Bose-O’Reilly S, Berger U. Essential indicators identifying chronic inorganic mercury intoxication: pooled analysis across multiple cross-sectional studies. PLoS One. 2016;11:160–323. doi: 10.1371/journal.pone.0160323
  21. Dorea JG. Mercury and lead during breast-feeding. Br J Nutr. 2004;92(1):21–40. doi: 10.1079/BJN20041163
  22. Farag MR, Alagawany M. Erythrocytes as a biological model for screening of xenobiotics toxicity. Chem-Biol Interact. 2018;279:73–83. doi: 10.1016/j.cbi.2017.11.007
  23. Fernandez-Luqueno F, López-Valdez F, Gamero-Melo P, et al. Heavy metal pollution in drinking water-a global risk for human health: A review. Afr J Environ Sci Technol. 2013;7:567–584.
  24. Gallego-Viñas G, Ballester F, Llop S. Chronic mercury exposure and blood pressure in children and adolescents: a systematic review. Environ Sci Pollut Res. 2018;26: 2238–2252. doi: 10.1007/s11356-018-3796-y
  25. Janse van Rensburg M, van Rooy M-J, Bester MJ, Oberholzer HM. Ultrastructural alterations of whole blood by copper, manganese and mercury metal mixtures using a chronic in vivo model of coagulation. Environ Toxicol Pharmacol. 2020;75:103–314. doi: 10.1016/j.etap.2019.103314
  26. Kim K-H, Kabir E, Jahan SA. A review on the distribution of Hg in the environment and its human health impacts. J Hazard Mater. 2016;306:376–385. doi: 10.1016/j.jhazmat.2015.11.031
  27. Notariale R, Infantino R, Palazzo E, Manna C. Erythrocytes as a Model for Heavy Metal-Related Vascular Dysfunction: The Protective Effect of Dietary Components. Int J Mol Sci. 2021;22(12):6604. doi: 10.3390/ijms22126604
  28. Teixeira FB, de Oliveira ACA, Leão LKR, et al. Exposure to Inorganic Mercury Causes Oxidative Stress, Cell Death, and Functional Deficits in the Motor Cortex. Front Mol Neurosci. 2018;11:125. doi: 10.3389/fnmol.2018.00125
  29. Yoshida T, Prudent M, D’Alessandro A. Red blood cell storage lesion: causes and potential clinical consequences. Blood Transfus. 2019;17(1):27–52.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure. Simulation diagram of chronic mercury acetate poisoning

Download (419KB)

Copyright (c) 2022 Shchepetkova K.M., Batotsyrenova E.G., Litvinenko L.A., Ramenskaya N.P., Kashuro V.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies