Quantitative assessment of regional pulmonary perfusion using three-dimensional ultrafast dynamic contrast-enhanced magnetic resonance imaging: pilot study results in 10 patients
- Authors: Zakharova A.V.1,2, Prits V.V.3,4, Pozdnyakov A.V.1,4
-
Affiliations:
- St. Petersburg State Pediatric Medical University
- City Multidisciplinary Hospital No. 2
- City Mariinsky Hospital, Saint Petersburg
- Academician A.M. Granov Russian Scientific Center for Radiology and Surgical Technologies
- Issue: Vol 12, No 6 (2021)
- Pages: 15-26
- Section: Original studies
- URL: https://journals.rcsi.science/pediatr/article/view/106304
- DOI: https://doi.org/10.17816/PED12615-26
- ID: 106304
Cite item
Abstract
Background. Currently there is a high demand in reliable noninvasive diagnostic technique assessing the physiological parameters of the lungs. We are exploring the three-dimensional ultrafast MRI sequence as a novel diagnostic modality allowing the assessment of regional quantitative perfusion parameters in pulmonary tissue.
Aim. To assess regional differences in quantitative pulmonary perfusion parameters in 10 volunteers with no evidence of interstitial lung disease by computed tomography, clinical, and laboratory data.
Materials and methods. 10 volunteers with no signs of interstitial lung disease were examined by three-dimensional ultrafast dynamic contrast-enhanced MR imaging using 3D T1-weighted images. The values of pulmonary blood flow (PBF), mean transit time (MTT), and pulmonary blood volume (PBV) for the targeted regions of interest were calculated based on the dynamic image series. For calculations, arterial input function (AIF) was used, as well as the time-intensity curves.
Results. The values of PBF, MTT, and PBV showed statistically significant differences between central and peripheral sections of lungs. Provided model can be implemented for quantitative assessment of regional pulmonary perfusion allows it to be used to determine the reliability of PBF, MTT and PBV values.
Conclusions. Three-dimensional ultrafast MRI sequence is a novel diagnostic modality allowing the assessment of regional quantitative pulmonary perfusion parameters in pulmonary tissue, regardless of physiological features of blood supply mechanisms in different lung regions.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Anna V. Zakharova
St. Petersburg State Pediatric Medical University; City Multidisciplinary Hospital No. 2
Email: ellin-ave@yandex.ru
Assistant Professor of the Department of Medical Biophysics; Radiologist
Russian Federation, Saint Petersburg; Saint PetersburgVictoria V. Prits
City Mariinsky Hospital, Saint Petersburg; Academician A.M. Granov Russian Scientific Center for Radiology and Surgical Technologies
Author for correspondence.
Email: brockendex.666@gmail.com
Medical Physicist
Russian Federation, Saint PetersburgAlexander V. Pozdnyakov
St. Petersburg State Pediatric Medical University; Academician A.M. Granov Russian Scientific Center for Radiology and Surgical Technologies
Email: pozdnyakovalex@yandex.ru
MD, PhD, Dr. Med. Sci., Professor, Head of the Department of Radiology Diagnostic
Russian Federation, Saint Petersburg; Saint PetersburgReferences
- Bagrov VG, Belov VV, Zadorozhnyy VN, et al. Metody matematicheskoy fiziki. III. Spetsial’nye funktsii Tomsk: Izd-vo NTL; 2002. 352 p. (In Russ.)
- Gaydes MA. Regulyatsiya ventilyatsii i perfuzii v legkikh. Medicina-Online.Ru. 2006. (In Russ.) Режим доступа: http://www.medicina-online.ru/articles/ 40247.
- German IP. The physics of humans body. Dolgoprudnyy: Intellekt; 2014. 991 p. (In Russ.)
- Grippi MA. Patofiziologiya legkikh. 2nd ed. Moscow: Izdatel’stvo BINOM; 2016. 304 p. (In Russ.)
- Dzgoev LB. Chetyrekhfaznaya model’ dykhaniya (novoe v fiziologii dykhaniya cheloveka). Vladikavkazskiy mediko-biologicheskiy vestnik. 2002:2(3):5–30. (In Russ.)
- Zenkov A.V. Chislennye metody. Moscow: Izdatel’stvo Yurayt, 2019. 122 p. (In Russ.)
- Kolos AI, Saygel’dina LL, Zhaynorov NE, et al. Pulmonary arteriovenous shunt: the difficulty of diagnosis and treatment tactics. Klinicheskaya Meditsina Kazakhstana. 2015;(4(38)):74–78. (In Russ.)
- Kondrashov VE, Korolev SB. MATLAB kak sistema programmirovaniya nauchno-tekhnicheskikh raschetov Moscow: Mir, In-t strategicheskoy stabil’nosti Minatoma RF; 2002. 350 p. (In Russ.)
- Kontorovich MB, Zislin BD, Chistyakov AV, et al. The respiratory dead space and realization of physiological effects of high frequency stream pulmonary ventilation. Kazan Medical journal. 2009;90(3): 313–318. (In Russ.)
- Mamonov SS. Solving of matrix equations. Bulletin of Ryazan State University Named For S.A. Yessenin. 2009;1:115–136. (In Russ.)
- Naumenko ZhK, Chernyak AV, Neklyudova GV, et al. Ventilation-perfusion ratio. Prakticheskaya Pul’monologiya. 2018;(4):86–90. (In Russ.)
- Axel L. Cerebral blood flow determination by rapid-sequence computed tomography: theoretical analysis. Radiology. 1980;137(3):679–686. doi: 10.1148/radiology.137.3.7003648
- Engblom H, Kanski M, Kopic S, et al. Importance of standardizing timing of hematocrit measurement when using cardiovascular magnetic resonance to calculate myocardial extracellular volume (ECV) based on pre- and post-contrast T1 mapping. J Cardiovasc Magn Reson. 2018;20(1):46. doi: 10.1186/s12968-018-0464-9
- Fishman AP. Pulmonary diseases and disorders. 2nd ed. New York: McGraw-Hill, 1988.
- Hakim TS, Dean GW, Lisbona R. Effect of body posture on spatial distribution of pulmonary blood flow. J Appl Physiol (1985). 1988;64(3):1160–1170. doi: 10.1152/jappl.1988.64.3.1160
- Hakim TS, Lisbona R, Dean GW. Gravity-independent inequality in pulmonary blood flow in humans. J Appl Physiol (1985). 1987;63(63):1114–1121. doi: 10.1152/jappl.1987.63.3.1114
- Hatabu H, Gaa J, Kim D, et al. Pulmonary perfusion: qualitative assessment with dynamic contrast-enhanced MRI using ultra-short TE and inversion recovery turbo FLASH. Magn Reson Med. 1996;36(4):503–508. doi: 10.1002/mrm.1910360402
- Hatabu H, Tadamura E, Levin DL, et al. Quantitative assessment of pulmonary perfusion with dynamic contrast-enhanced MRI. Magn Reson Med. 1999;42(6):1033–1038. doi: 10.1002/(sici)1522-2594(199912)42:6<1033::aid-mrm7>3.0.co;2-7
- Hermann I, Uhrig T, Chacon-Caldera J, Akçakaya M. Towards measuring the effect of flow in blood T1 assessed in a flow phantom and in vivo. Phys Med Biol. 2020;65:095001.
- Janson N. Non-linear dynamics of biological systems. Contemporary Physics. 2012;53(2):137–168. doi: 10.1080/00107514.2011.644441
- Jerosch-Herold M, Wilke N, Stillman AE. Magnetic resonance quantification of the myocardial perfusion reserve with a Fermi function model for constrained deconvolution. Med Phys. 1998;25(1):73–84. doi: 10.1118/1.598163
- Kikuchi K, Murase K, Miki H, et al. Quantitative evaluation of mean transit times obtained with dynamic susceptibility contrast-enhanced MR imaging and with (133)Xe SPECT in occlusive cerebrovascular disease. AJR Am J Roentgenol. 2002;179(1):229–235. doi: 10.2214/ajr.179.1.1790229
- Korfiatis P, Hu L, Kelm Z, et al. A DSC Digital Brain Phantom for Assessment of Leakage Correction Methods. Proceedings of the Radiological Society of North America and Scientific Assembly and Annual Meeting. 2013.
- Larsson HBW, Hansen AE, Berg HK, et al. Dynamic contrast-enhanced quantitative perfusion measurement of the brain using T1-weighted MRI at 3T. J Magn Reson Imaging. 2008;27(4):754–762. doi: 10.1002/jmri.21328
- Levin DL, Chen Q, Zhang M, et al. Evaluation of regional pulmonary perfusion using ultrafast magnetic resonance imaging. Magn Reson Med 2001;46(1):166–171. doi: 10.1002/mrm.1172
- Ley-Zaporozhan J, Molinari F, Risse F, et al. Repeatability and reproducibility of quantitative whole-lung perfusion magnetic resonance imaging. J Thorac Imaging. 2011;26(3):230–239. doi: 10.1097/RTI.0b013e3181e48c36
- Malkov V, Rogers D, Jaffray D. TH-AB-BRA-05: Lung Cannot Be Treated as Homogeneous in Radiation Transport Simulations in Magnetic Fields. Medical Physics. 2016; 43(6):3854–3854.
- Meier P, Zierler KL. On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol. 1954;6(12):731–744. doi: 10.1152/jappl.1954.6.12.731
- Murase K, Kikuchi K, Miki H, et al. Determination of arterial input function using fuzzy clustering for quantification of cerebral blood flow with dynamic susceptibility contrast-enhanced MR imaging. J Magn Reson Imaging. 2001;13(5):797–806. doi: 10.1002/jmri.1111
- Murase K, Shinohara M, Yamazaki Y. Accuracy of deconvolution analysis based on singular value decomposition for quantification of cerebral blood flow using dynamic susceptibility contrast-enhanced magnetic resonance imaging. Phys Med Biol. 2001;46(12): 3147–3159. doi: 10.1088/0031-9155/46/12/306
- Nyrén S, Mure M, Jacobsson H, et al. Pulmonary perfusion is more uniform in the prone than in the supine position: scintigraphy in healthy humans. J Appl Physiol (1985). 1999;86:1135–1141. doi: 10.1152/jappl.1999.86.4.1135
- Ohno Y, Hatabu H, Takenaka D, et al. Contrast-enhanced MR perfusion imaging and MR angiography: utility for management of pulmonary arteriovenous malformations for embolotherapy. Eur J Radiol. 2002;41:136–146. doi: 10.1016/s0720-048x(01)00419-3
- Ohno Y, Hatabu H, Takenaka D, et al. Solitary pulmonary nodules: potential role of dynamic MR imaging in management initial experience. Radiology. 2002;224(2): 503–511. doi: 10.1148/radiol.2242010992
- Ostergaard L, Sorensen AG, Kwong KK, et al. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II: Experimental comparison and preliminary results. Magn Reson Med. 1996;36(5):726–736. doi: 10.1002/mrm.1910360511
- Ostergaard L, Weisskoff RM, Chesler DA, et al. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis. Magn Reson Med. 1996;36:715–725.
- Pistolesi M, Miniati M, Di Ricco G, et al. Perfusion lung imaging in the adult respiratory distress syndrome. J Thorac Imaging. 1986;1(3):11–24. doi: 10.1097/00005382-198607000-00004
- Schuster DP. ARDS: clinical lessons from the oleic acid model of acute lung injury. Am J Respir Crit Care Med. 1994;149(1):245–260. doi: 10.1164/ajrccm.149.1.8111590
- Schuster DP, Kaplan JD, Gauvain K, et al. Measurement of regional pulmonary blood flow with PET. J Nucl Med. 1995;36(3):371–377.
- Wagner EM. Bronchial Circulation. Encyclopedia of Respiratory Medicine. 2006:255–259. doi: 10.1016/B0-12-370879-6/00503-2
- Wake N, Chandarana H, Rusinek H, et al. Accuracy and precision of quantitative DCE-MRI parameters: How should one estimate contrast concentration? Magn Reson Imaging. 2018;52:16–23. doi: 10.1016/j.mri.2018.05.007
- Weinmann HJ, Brasch RC, Press WR, et al. Characteristics of gadolinium-DTPA complex: a potential NMR contrast agent. AJR Am J Roentgenol. 1984;142(3):619–624. doi: 10.2214/ajr.142.3.619
- West JB. Regional differences in the lung. Chest. 1978;74(4):426–437. doi: 10.1378/chest.74.4.426
- Wilson JE, Bynum LJ, Ramanathan M. Dynamic measurement of regional ventilation and perfusion of the lung with Xe-133. J Nucl Med. 1977;18(7):660–668.
- Zhang LJ, Zhou CS, Schoepf UJ, et al. Dual-energy CT lung ventilation/perfusion imaging for diagnosing pulmonary embolism. Eur Radiol. 2013;23:2666–2675. doi: 10.1007/s00330-013-2907-x
- Zierler K. Indicator dilution methods for measuring blood flow, volume, and other properties of biological systems: a brief history and memoir. Ann Biomed Eng. 2000;28(8):836–848. doi: 10.1114/1.1308496
Supplementary files
