Diagnostic value of cortisol identification in biological body fluid in case of infectious diseases (literature review)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Disorders of control mechanisms caused by glucocorticoid hormones of adrenal cortex have a significant role in the pathogenesis of infectious diseases, first of all, due to cortisol, one of the key hormones with anti-inflammatory activity. Currently the conception about the mechanisms of cortisol influence, its functional abilities, connection with immune and nerve cells, involvement in cytokine regulation, features of free-radical oxidation has been extended. There has been identified the dependence of cortisol influence upon the isoform, amount and affinity of its receptors on target cells. The present review describes the study results concerning cortisol level in case of the most often occurring infectious diseases in children – acute respiratory and intestinal infections, infectious diseases of the central nervous system. There has been noticed a considerable data variability about cortisol level in normal state and in pathological one, however, the majority of articles have detected its connection with clinical manifestations and outcomes of the diseases. The study of cortisol level in cerebrospinal fluid is of a special interest in case of neuroinfections, specifying its direct connection with the disease severity and aetiology that gives new possibilities to develop effective diagnostic criteria. In general, the literature data specifies the advanced study of disorders of hypothalamus-hypophysial-adrenal gland functioning, receptor apparatus of target cells, as well as interrelations of cortisol with immune system in case of infectious diseases to reveal new criteria for diagnostics, course prediction and disease outcome, therapy correction.

About the authors

Lidia A. Alekseeva

Pediatric Research and Clinical Center for Infectious Diseases

Author for correspondence.
Email: kldidi@mail.ru

PhD, Leading Scientist, Research Department of Clinical Laboratory Diagnostics

Russian Federation, Saint Petersburg

Elena V. Makarenkova

Pediatric Research and Clinical Center for Infectious Diseases

Email: ele7227@yandex.ru

Junior Research Associate, Research Department of Clinical Laboratory Diagnostics

Russian Federation, Saint Petersburg

Natalia V. Skripchenko

Pediatric Research and Clinical Center for Infectious Diseases; St. Petersburg State Pediatric Medical University

Email: snv@niidi.ru

MD, PhD, Dr. Med. Sci., Professor, Deputy Director of Science, Head of the Department of Infectious Diseases of Postgraduate and Continuing Professional Education

Russian Federation, Saint Petersburg; Saint Petersburg

Tatiana V. Bessonova

Pediatric Research and Clinical Center for Infectious Diseases

Email: bioximiya@mail.ru

Research Associate, Research Department of Clinical Laboratory Diagnostics

Russian Federation, Saint Petersburg

Anton A. Zhirkov

Pediatric Research and Clinical Center for Infectious Diseases

Email: ant-zhirkov@yandex.ru

Junior Research Associate, Research Department of Clinical Laboratory Diagnostics

Russian Federation, Saint Petersburg

Nina E. Monakhova

Pediatric Research and Clinical Center for Infectious Diseases

Email: immidi@yandex.ru

Research Associate, Research Department of Clinical Laboratory Diagnostics

Russian Federation, Saint Petersburg

References

  1. Alekseeva LA, Bessonova TV, Makarenkova EV, et al. Cortisol and laboratory indicators of systemic inflammation in case of bacterial purulent meningitis and viral encephalitis in children. Pediatrician (St. Petersburg). 2020;11(4):21–28. (In Russ) doi: 10.17816/PED11421-28
  2. Balikin VF. Kliniko-prognosticheskoe znachenie profilei gormonal’nogo i immunnogo statusov pri virusnykh gepatitakh u detei. Children infections. 2003;(1): 20–23. (In Russ.)
  3. Gaiton AK, Kholl DzhEh. Meditsinskaya fiziologiya. Kobrin VI, editor. Moscow: Logosfera, 2008. 1296 p. (In Russ.)
  4. Govorova LV, Alekseyeva LA, Vilnits AA, et al. Influence of cortisol and somatotropic hormone on oxidative stress development in children with critical conditions of neuroinfectious diseases. Journal Infectology. 2014;6(2):25–31. (In Russ.)
  5. Golyuchenko OA, Asachuk SS. Some features of sickly children endocrine, immune, lipid transport systems during acute respiratory infections. Journal of the Grodno State Medical University. 2015;(4):54–57. (In Russ.)
  6. Dorovskikh VA, Batalova TA, Sergievich AA, Urazova GE. Glyukokortikoidy: ot teorii k praktike: uchebnoe posobie. Blagoveshchensk: Amurskaya gosudarstvennaya meditsinskaya aka-demiya federal’nogo agentstva po zdravookhraneniyu i sotsial’nomu razvitiyu RF, 2006. 77 p. (In Russ.)
  7. Zots YaV. Diagnostic value of determination the state of the pituitary-adrenal and pituitary-thyroid system in patients with acute bacterial meningitis complicated by brain edema. Norwegian Journal of Development of the International Science. 2019;(26–2):43–48. (In Russ.)
  8. Kalagina LS, Pavlov ChS, Fomina YuA. Serological tests of functional activity of the digestive system (gastrin, pepsinogen-I, trypsin), general IGE and serum cortisol levels in children with hepatitis A and B. Experimental and Clinical Gastroenterology Journal. 2013;(6):43–46. (In Russ.)
  9. Koz’ko VN, Zots YaV, Solomennik AO, et al. Sostoyanie gormonal’nogo profilya v syvorotke krovi u bol’nykh s ostrymi bakterial’nymi meningitami. Meditsinskie novosti. 2018;(11):87–90. (In Russ.)
  10. Kotlyarova SI, Gritsai IV. Neiroehndokrinnaya adaptatsiya i immunnologicheskaya zashchita pri dizenterii i sal’moneleze i ikh assotsiirovannoi forme. Children Infections. 2004;(4):14–17. (In Russ.)
  11. Landyshev YuS. Mechanisms of action and therapeutic effects of basic glucocorticoids. Amurskii meditsinskii zhurnal. 2014;(1):10–29. (In Russ.)
  12. Malyugina TN, Malinina NV, Averyanov AP. Cortisol level as a marker of adaptation processes in children with acute respiratory viral infections. Saratov Journal of Medical Scientific Research. 2018;14(4):646–650. (In Russ.)
  13. Malyugina TN, Zaharova IS. Adrenocorticotropin hormone and cortisol dynamic variation in case of children’s neuroinfections. Journal Infectology. 2016;8(4):50–57. (In Russ.) doi: 10.22625/2072-6732-2016-8-4-50-57
  14. Merkulov VM, Merkulova TI, Bondar NP. Mechanisms of brain glucocorticoid resistance in stress-induced psychopathologies. Biochemistry (Moscow). 2017;82(3):494–510. (In Russ.) doi: 10.1134/S0006297917030142
  15. Ryabova TM, Lysenko IM. Kharakteristika gormonal’nogo statusa detei grudnogo vozrasta s ostrymi pnevmoniyami i bronkhitami. Maternal and child health. 2010;(2):28–31. (In Russ.)
  16. Saidov AA. Patomorfologic changes and immunological indicators at sharp intestinal infection at newborn children till one year. Vestnik soveta molodykh uchenykh i spetsialistov Chelyabinskoi oblasti. 2017;3(2):71–74. (In Russ.)
  17. Samotrueva MA, Yasenyavskaya AL, Tsibizova AA, et al. Neuroimmunoendocrinology: modern concepts of molecular mechanisms. Immunologiya. 2017;38(1):49–59. (In Russ.) doi: 10.18821/0206-4952-2017-38-1-49-59
  18. Skripchenko NV, Alekseyeva LA, Ivashchenko IA, Krivosheyenko EM. Cerebrospinal fluid and prospects for its study. Russian Bulletin of Perinatology and Pediatrics. 2011;56(6):88–97. (In Russ.)
  19. Sokhan AV. Uroven’ kortizola v spinnomozgovoi zhidkosti patsientov s ostrymi meningitami razlichnoi ehtiologii. Aktual’nye problemy sovremennoi meditsiny. 2015;15(4):117–119. (In Russ.)
  20. Sokhan AV, Kozko VN, Burma YaI, et al. Effect of dysfunction of the blood-brain barrier, metabolic and endocrine disorders on the damage of the CNS cells in acute bacterial meningitis and meningoencephalitis in adults. Znanstvena misel journal. 2018;(10–1):32–37. (In Russ.)
  21. Shirshev SV, Lopatina VA. Changes in the parameters of immune status and cortisol level in children with recurrent obstructive bronchitis. Immune correction with polyoxidonium. Meditsinskaya immunologiya. 2003;5(5–6):555–562. (In Russ.)
  22. Lavin N, editor. Ehndokrinologiya. Moscow: Praktika, 1999. 1128 p. (In Russ)
  23. Alder MN, Opoka AM, Wong HR. The glucocorticoid receptor and cortisol levels in pediatric septic shock. Crit Care. 2018;22(1):244. doi: 10.1186/s13054-018-2177-8
  24. Aneja R, Carcillo JA. What is the rationale for hydrocortisone treatment in children with infection-related adrenal insufficiency and septic shock? Arch Dis Child. 2007;92(2):165–169. doi: 10.1136/adc.2005.088450
  25. Bae YJ, Kratzsch J. Corticosteroid-binding globulin: modulating mechanisms of bioavailability of cortisol and its clinical implications. Best Pract Res Clin Endocrinol Metab. 2015;29(5):761–772. doi: 10.1016/j.beem.2015.09.001
  26. Beran O, Dzupova O, Holub M. Cortisol kinetics in cerebrospinal fluid during bacterial meningitis. J Clin Neurosci. 2011;18(7):1001–1002. doi: 10.1016/j.jocn.2010.12.020
  27. Bone M, Diver M, Selby A, et al. Assessment of adrenal function in the initial phase of meningococcal disease. Pediatrics. 2002;110(3):563–569. doi: 10.1542/peds.110.3.563
  28. Cain DW, Cidlowski JA. Immune regulation by glucocorticoids. Nat Rev Immunol. 2017;17(4):233–247. doi: 10.1038/nri.2017.1
  29. De Kleijn ED, Joosten KF, Van Rijn B, et al: Low serum cortisol in combination with high adrenocorticotrophic hormone concentrations are associated with poor outcome in children with severe meningococcal disease. Pediatr Infect Dis J. 2002;21(4):330–336. doi: 10.1097/00006454-200204000-00013
  30. Goecke IA, Alvarez C, Henríquez J, et al. Methotrexate regulates the expression of glucocorticoid receptor alpha and beta isoforms in normal human peripheral mononuclear cells and human lymphocyte cell lines in vitro. Mol Immunol. 2007;44(8):2115–2123. doi: 10.1016/j.molimm.2006.07.303
  31. Hladky SB, Barrand MA. Fluid and ion transfer across the blood-brain and blood-cerebrospinal fluid barriers; a comparative account of mechanisms and roles. Fluids Barriers CNS. 2016;13(1):19. doi: 10.1186/s12987-016-0040-3
  32. Holub M, Beran O, Dzupová O, et al. Cortisol levels in cerebrospinal fluid correlate with severity and bacterial origin of meningitis. Crit Care. 2007;11(2):R41. doi: 10.1186/cc5729
  33. Jenniskens M, Weckx R, Dufour T, et al. The Hepatic Glucocorticoid Receptor Is Crucial for Cortisol Homeostasis and Sepsis Survival in Humans and Male Mice. Endocrinology. 2018;159(7):2790–2802. doi: 10.1210/en.2018-00344
  34. Joosten KF, de Kleijn ED, Westerterp M, et al. Endocrine and metabolic responses in children with meningoccocal sepsis: striking differences between survivors and nonsurvivors. J Clin Endocrinol Metab. 2000;85(10): 3746–3753. doi: 10.1210/jcem.85.10.6901
  35. Kolditz M, Höffken G, Martus P, et al, CAPNETZ study group. Serum cortisol predicts death and critical disease independently of CRB-65 score in community-acquired pneumonia: a prospective observational cohort study. BMC Infect Dis. 2012;12:90. doi: 10.1186/1471-2334-12-90
  36. Mahale RR, Mehta A, Uchil S. Estimation of cerebrospinal fluid cortisol level in tuberculous meningitis. J Neurosci Rural Pract. 2015;6(4):541–544. doi: 10.4103/0976-3147.165421
  37. Mason BL, Pariante CM, Jamel S, Thomas SA. Central nervous system (CNS) delivery of glucocorticoids is fine-tuned by saturable transporters at the blood-CNS barriers and nonbarrier regions. Endocrinology. 2010;151(11): 5294–5305. doi: 10.1210/en.2010-0554
  38. Mehta A, Mahale RR, Sudhir U, et al. Utility of cerebrospinal fluid cortisol level in acute bacterial meningitis. Ann Indian Acad Neurol. 2015;18(2):210–214. doi: 10.4103/0972-2327.150626
  39. Melcangi RC, Garcia-Segura LM, Mensah-Nyagan AG. Neuroactive steroids: state of the art and new perspectives. Cell Mol Life Sci. 2008;65(5):777–797. doi: 10.1007/s00018-007-7403-5
  40. Molijn GJ, Koper JW, van Uffelen CJ, et al. Temperature-induced down-regulation of the glucocorticoid receptor in peripheral blood mononuclear leucocyte in patients with sepsis or septic shock. Clin Endocrinol (Oxf). 1995;43(2):197–203. doi: 10.1111/j.1365-2265.1995.tb01915.x
  41. Noti M, Corazza N, Mueller C, et al. TNF suppresses acute intestinal inflammation by inducing local glucocorticoid synthesis. J Exp Med. 2010;207(5): 1057–1066. doi: 10.1084/jem.20090849
  42. Qiao S, Okret S, Jondal M. Thymocyte-synthesized glucocorticoids play a role in thymocyte homeostasis and are down-regulated by adrenocorticotropic hormone. Endocrinology. 2009;150(9):4163–4169. doi: 10.1210/en.2009-0195
  43. Remmelts HH, Meijvis SC, Kovaleva A, et al. Changes in serum cortisol levels during community-acquired pneumonia: the influence of dexamethasone. Respir Med. 2012;106(6):905–908. doi: 10.1016/j.rmed.2012.02.008
  44. Stearns-Kurosawa DJ, Osuchowski MF, Valentine C, et al. The pathogenesis of sepsis. Annu Rev Pathol. 2011;6: 19–48. doi: 10.1146/annurev-pathol-011110-130327
  45. Talabér G, Jondal M, Okret S. Extra-adrenal glucocorticoid synthesis: immune regulation and aspects on local organ homeostasis. Mol Cell Endocrinol. 2013;380(1–2): 89–98. doi: 10.1016/j.mce.2013.05.007
  46. Van Bogaert T, Vandevyver S, Dejager L, et al. Tumor necrosis factor inhibits glucocorticoid receptor function in mice: a strong signal toward lethal shock. J Biol Chem. 2011;29:286(30):26555–26567. doi: 10.1074/jbc.M110.212365
  47. van Woensel JB, Biezeveld MH, Alders AM, et al. Adrenocorticotropic hormone and cortisol levels in relation to inflammatory response and disease severity in children with meningococcal disease. J Infect Dis. 2001;184(12):1532–1537. doi: 10.1086/324673
  48. Vassiliou AG, Floros G, Jahaj E, et al. Decreased glucocorticoid receptor expression during critical illness. Eur J Clin Invest. 2019;49(4): e13073. doi: 10.1111/eci.13073
  49. Xie Y, Tolmeijer S, Oskam JM, et al. Glucocorticoids inhibit macrophage differentiation towards a pro-inflammatory phenotype upon wounding without affecting their migration. Dis Model Mech. 2019;12(5): dmm037887. doi: 10.1242/dmm.037887

Copyright (c) 2021 Alekseeva L.A., Makarenkova E.V., Skripchenko N.V., Bessonova T.V., Zhirkov A.A., Monakhova N.E.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies