Clinical features, treatment and rehabilitation of new coronavirus infection in patients with metabolic syndrome

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This review examines the main aspects of the course of a new coronavirus infection in patients with metabolic syndrome, provides up-to-date statistics on morbidity and mortality. Abdominal obesity, insulin resistance, arterial hypertension and dyslipidemia, which form the metabolic syndrome, are independent factors of a severe course of infection with a high risk of developing SARS, various complications, mainly the development of acute respiratory distress syndrome, extrapulmonary systemic inflammation and, finally, death. During the period of anti-epidemic measures, children turn out to be the most vulnerable in terms of losing the rational, healthy stereotypes of nutrition, regulation of “screen time”, responsible planning of study time and leisure, regular and intense physical activity. It requires increased attention of doctors, teachers and rehabilitation specialists to the problem maintaining the commitment of children and parents to a healthy lifestyle. Based on the formed concept of the presence of common links in the pathogenesis of the development of metabolic disorders and the infectious process, the authors identified the most significant issues of therapy and rehabilitation of this category of patients. Taking into account the need of patients for psychological adaptation of the past illness and increasing their resistance to stressful situations, within the framework of providing a personalized approach to the management of patients, may require timely diagnosis of anxiety-depressive disorders with the appointment of appropriate therapeutic measures.

About the authors

Dmitry O. Ivanov

St. Petersburg State Pediatric Medical University

Author for correspondence.
Email: doivanov@yandex.ru

MD, Dr. Sci. (Med.), Professor, Head of the Department of Neonatology with Courses in Neurology and Obstetrics-Gynecology, Faculty of Postgraduate and Additional Professional Education, Rector

Russian Federation, Saint Petersburg

Yury P. Uspenskiy

St. Petersburg State Pediatric Medical University

Email: uspenskiy65@mail.ru

MD, Dr. Sci. (Med.), Professor, Head of the Department of Faculty Therapy named after Professor V.A. Valdman

Russian Federation, Saint Petersburg

Andrey M. Sarana

Saint Petersburg State University

Email: asarana@mail.ru

MD, PhD, Associate Professor, Department of Postgraduate Medical Education, First Deputy Chief of the Healthcare Committee of the St. Petersburg Administration

Russian Federation, Saint Petersburg

Yulia A. Fominykh

St. Petersburg State Pediatric Medical University

Email: jaf@mail.ru

MD, PhD, Dr. Sci. (Med.), Professor, Department of Faculty Therapy named after Professor V.A. Valdman

Russian Federation, Saint Petersburg

Iana V. Sousova

St. Petersburg State Pediatric Medical University

Email: i.v.sousova@yandex.ru

Assistant, Department of Faculty Therapy named after Professor V.A. Valdman

Russian Federation, Saint Petersburg

Dmitry V. Zakharov

St. Petersburg State Pediatric Medical University

Email: dmitryzakharov@mail.ru

MD, PhD, Deputy Director of the National Medical Research Center for specialty "Pediatrics", Associate Professor, Department of Faculty Therapy named after Professor V.A. Valdman

Russian Federation, Saint Petersburg

References

  1. Alexandrovich YuS, Alekseeva EI, Bakradze MD, et al. Clinical Features and Management of the Disease Caused by New Coronaviral Infection (COVID-19) in Children. Version 2. Pediatric Pharmacology. 2020;17(3):187–212. (In Russ.) doi: 10.15690/pf.v17i3.2123
  2. Belkin AA. Syndrome effects of intensive therapy – post intensive care syndrome (PICS). Annals of Critical Care. 2018;(2):12–23. (In Russ.) doi: 10.21320/1818-474X-2018-2-12-23
  3. Bubnova MG, Persiyanova-Dubrova AL, Lyamina NP, Aronov DM. Rehabilitation after new coronavirus infection (COVID-19): principles and approaches. CardioSomatics. 2020;11(4):6–14. (In Russ.) doi: 10.26442/22217185.2020.4.200570
  4. Demidova TYu, Volkova EI, Gritskevich EYu. Peculiarities of the COVID-19 course and consequences in overweight and obese patients. Lessons from the current pandemic. Obesity and metabolism. 2020;17(4): 375–384. (In Russ.) doi: 10.14341/omet12663
  5. Rossiiskaya assotsiatsiya ehndokrinologov. Klinicheskie rekomendatsii. Ozhirenie u detei. Moscow: Rossiiskaya assotsiatsiya ehndokrinologov, 2021. 77 p. (In Russ.)
  6. Romantsova TR, Sych YuP. Immunometabolism and metainflammation in obesity. Obesity and Metabolism. 2019;16(4):3–17. (In Russ.) doi: 10.14341/omet12218
  7. Ahlström B, Frithiof R, Hultström M, et al. The Swedish COVID-19 intensive care cohort: Risk factors of ICU admission and ICU mortality. Acta Anaesthesiol Scand. 2021;65(4):525–533. doi: 10.1111/aas.13781
  8. Alberti KG, Zimmet P, Shaw J. IDF Epidemiology Task Force Consensus Group. The metabolic syndrome – a new worldwide definition. Lancet. 2005;366(9491): 1059–1062. doi: 10.1016/S0140-6736(05)67402-8
  9. Angulo P. Nonalcoholic fatty liver disease. N Engl J Med. 2002;346:1221–1231. doi: 10.1056/NEJMra011775
  10. Aparisi Á, Iglesias-Echeverría C, Ybarra-Falcón C, et al. Low-density lipoprotein cholesterol levels are associated with poor clinical outcomes in COVID-19. medRxiv. 2020. doi: 10.1101/2020.10.06.20207092
  11. Atmosudigdo IS, Pranata R, Lim MA, et al. Dyslipidemia Increases the Risk of Severe COVID-19: A Systematic Review, Meta-analysis, and Meta-regression. Clin Med Insights: Endocrinol Diabetes. 2020;14:1–7. doi: 10.1177/1179551421990675
  12. Bansal M. Cardiovascular disease and COVID-19. Diabetes Metab Syndr: Clin Res Rev. 2020;14(3):247–250. doi: 10.1016/j.dsx.2020.03.013
  13. Berg CM, Lappas G, Strandhagen E, et al. Food patterns and cardiovascular disease risk factors: the Swedish INTERGENE research program. Am J Clin Nutr. 2008;88(2):289–297. doi: 10.1093/ajcn/88.2.289
  14. Blaton VH, Korita I, Bulo A. How is metabolic syndrome related to dyslipidemia? Biochem Med. 2008;18(2):14–24. doi: 10.11613/BM.2008.003
  15. Bode B, Garrett V, Messler J, et al. Glycemic characteristics and clinical outcomes of COVID-19 patients hospitalized in the United States. J Diabetes Sci Technol. 2020;14(4): 813–821. doi: 10.1177/1932296820924469
  16. Borghi F, Sevá-Pessôa B, Grassi-Kassisse DM. The adipose tissue and the involvement of the renin-angiotensin- aldosterone system in cardiometabolic syndrome. Cell Tissue Res. 2016;366(3):543–548. doi: 10.1007/s00441-016-2515-6
  17. Borobia AM, Carcas AJ, Arnalich F, et al. A Cohort of Patients with COVID-19 in a Major Teaching Hospital in Europe. J Clin Med. 2020;9(6):1733. doi: 10.3390/jcm9061733
  18. Cai Q, Chen F, Wang T, et al. Obesity and COVID-19 Severity in a Designated Hospital in Shenzhen, China. Diabetes Care. 2020;43(7):1392–1398. doi: 10.2337/dc20-0576
  19. Cariou B, Hadjadj S, Wargny M, et al. Phenotypic characteristics and prognosis of inpatients with COVID-19 and diabetes: the CORONADO study. Diabetologia. 2020; 63:1500–1515. doi: 10.1007/s00125-020-05180-x
  20. Chee YJ, Ng SJH, Yeoh E. Diabetic ketoacidosis precipitated by COVID-19 in a patient with newly diagnosed diabetes mellitus. Diabetes Res Clin Pract. 2020;164:108166. doi: 10.1016/j.diabres.2020.108166
  21. Cinti S, Mitchell G, Barbatelli G, et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res. 2005;46(11):2347–2355. doi: 10.1194/jlr.M500294-JLR200
  22. Costa FF, Rosário WR, Ribeiro Farias AC, et al. Metabolic syndrome and COVID-19: An update on the associated comorbidities and proposed therapies. Diabetes & metabolic syndrome. 2020;14(5):809–814. doi: 10.1016/j.dsx.2020.06.016
  23. COVID-19 and Obesity: The 2021 Atlas. World Obesity Federation. 2021. [Internet]. [cited 2021 Jul 5]. Available from: https://www.worldobesityday.org/assets/downloads/COVID-19-and-Obesity-The-2021-Atlas.pdf
  24. COVID-19 Map. Johns Hopkins Coronavirus Resource Center [Internet]. [cited 2021 Jul 7]. Available from: https://coronavirus.jhu.edu/map.html
  25. Cure E, Cure MC. Can dapagliflozin have a protective effect against COVID-19 infection? A hypothesis. Diabetes Metab Syndr: Clin Res Rev. 2020;14(4):405–406. doi: 10.1016/j.dsx.2020.04.024
  26. Das UN. Renin–angiotensin–aldosterone system in insulin resistance and metabolic syndrome. J Transl Int Med. 2016;4(2):66–72. doi: 10.1515/jtim-2016-0022
  27. Fan J, Wang H, Ye G, et al. Letter to the Editor: Low-density lipoprotein is a potential predictor of poor prognosis in patients with coronavirus disease 2019. Metabolism. 2020;107:154243. doi: 10.1016/j.metabol.2020.154243
  28. Fan VS, Dominitz JA, Eastment MC, et al. Risk factors for testing positive for SARSCoV-2 in a national US healthcare system. Clin Infect Dis. 2020;73(9):e3085–e3094. doi: 10.1093/cid/ciaa1624
  29. Grasselli G, Zangrillo A, Zanella A, et al.: COVID-19 Lombardy ICU Network. Baseline Characteristics and Outcomes of 1591 Patients Infected with SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020;323(16):1574–1581. doi: 10.1001/jama.2020.5394
  30. Grundy SM. Metabolic syndrome pandemic. Arteriosclerosis Thrombosis Vascular Biology. 2008;28(4): 629–636. doi: 10.1161/ATVBAHA.107.151092
  31. Guan WJ. China Medical Treatment Expert Group for COVID-19 Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382: 1859–1862. doi: 10.1056/NEJMc2005203
  32. Hahn BH, Grossman J, Chen W, McMahon M. The pathogenesis of atherosclerosis in autoimmune rheumatic diseases: Roles of inflammation and dyslipidemia. J Autoimmun. 2007;28(2–3):69–75. doi: 10.1016/j.jaut.2007.02.004
  33. Hamer M, Kivimäki M, Gale CR, Batty GD. Lifestyle risk factors, inflammatory mechanisms, and COVID-19 hospitalization: A community-based cohort study of 387,109 adults in UK. Brain, Behavior, and Immunity. 2020;87:184–187. doi: 10.1016/j.bbi.2020.05.059
  34. Hariyanto TI, Kurniawan A. Metformin use is associated with reduced mortality rate from coronavirus disease 2019 (COVID-19) infection. Obes Med. 2020;19:100290. doi: 10.1016/j.obmed.2020.100290
  35. Hersoug LG, Linneberg A. The link between the epidemics of obesity and allergic diseases: does obesity induce decreased immune tolerance? Allergy. 2007;62(10): 1205–1213. doi: 10.1111/j.1398-9995.2007.01506.x
  36. Hilser JR, Han Y, Biswas S, et al. Association of serum HDL-cholesterol and apolipoprotein A1 levels with risk of severe SARS-CoV-2 infection. J Lipid Res. 2021;62:100061. doi: 10.1016/j.jlr.2021.100061
  37. Hippisley-Cox J, Young D, Coupland C, et al. Risk of severe COVID-19 disease with ACE inhibitors and angiotensin receptor blockers: cohort study including 8.3 million people. Heart. 2020;106(19):1503–1511. doi: 10.1136/heartjnl-2020-317393
  38. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–280. doi: 10.1016/j.cell.2020.02.052
  39. Holman N, Knighton P, Kar P, et al. Risk factors for COVID-19-related mortality in people with type 1 and type 2 diabetes in England: a population-based cohort study. Lancet Diabetes Endocrinology. 2020;8(10): 823–833. doi: 10.1016/S2213-8587(20)30271-0
  40. Hu X, Chen D, Wu L, et al. Declined serum high density lipoprotein cholesterol is associated with the severity of COVID-19 infection. Clinica Chimica Acta. 2020;510:105–110. doi: 10.1016/j.cca.2020.07.015
  41. Huang I, Lim MA, Pranata R. Diabetes mellitus is associated with increased mortality and severity of disease in COVID-19 pneumonia – a systematic review, meta-analysis, and meta-regression. Diabetes Metab Syndr: Clin Res Rev. 2020;14(4):395–403. doi: 10.1016/j.dsx.2020.04.018
  42. Huang SC, Smith AM, Everts B, et al. Metabolic reprogramming mediated by the mTORC2-IRF4 signaling axis is essential for macrophage alternative activation. Immunity. 2016;45(4):817–830. doi: 10.1016/j.immuni.2016.09.016
  43. IDF Diabetes Atlas (9th edition 2019). Demographic and geographic outline [Internet]. [cited 2021 Jul 3]. Available from: https://www.diabetesatlas.org/en/sections/demographic-and-geographic-outline.html
  44. Iqbal Z, Ho JH, Adam S, et al. Managing hyperlipidaemia in patients with COVID-19 and during its pandemic: An expert panel position statement from HEART UK. Aterosclerosis. 2020;313:126–136. doi: 10.1016/j.atherosclerosis.2020.09.008
  45. Kim SY, Kumble S, Patel B, et al. Managing the Rehabilitation Wave: Rehabilitation Services for COVID-19 Survivors. Arch Phys Med Rehabil. 2020;101(12): 2243–2249. doi: 10.1016/j.apmr.2020.09.372
  46. Li G, Du L, Cao X, et al. Follow-up study on serum cholesterol profiles and potential sequelae in recovered COVID-19 patients. BMC Infect Dis. 2021;21:299. doi: 10.1186/s12879-021-05984-1
  47. Li Y, Zhang Z, Yang L, et al. The MERS-CoV receptor DPP4 as a candidate binding target of the SARS-CoV-2 spike. iScience. 2020;23(8):101400. doi: 10.1016/j.isci.2020.101400
  48. Liu F, Long X, Zhang B, et al. ACE2 expression in pancreas may cause pancreatic damage after SARS-CoV-2 infection. Clin Gastroenterol Hepatol. 2020;18(9): 2128–2130. doi: 10.1016/j.cgh.2020.04.040
  49. Liu R, Nikolajczyk BS. Tissue Immune Cells Fuel Obesity-Associated Inflammation in Adipose Tissue and Beyond. Front Immunol. 2019. doi: 10.3389/fimmu.2019.01587
  50. Lorenzo-González C, Atienza-Sánchez E, Reyes-Umpierrez D, et al. Safety and efficacy of DDP4-inhibitors for management of hospitalized general medicine and surgery patients with type 2 diabetes. Endocr Pract. 2020;26(7):722–728. doi: 10.4158/EP-2019-0481
  51. Manna P, Jain SK. Obesity, Oxidative Stress, Adipose Tissue Dysfunction, and the Associated Health Risks: Causes and Therapeutic Strategies. Metabolic Syndrome and Related Disorders. 2015;13(10):423–444. doi: 10.1089/met.2015.0095
  52. Marseglia L, Manti S, D’Angelo G, et al. Oxidative stress in obesity: a critical component in human diseases. Int J Mol Sci. 2014;16(1):378–400. doi: 10.3390/ijms16010378
  53. Masana L, Correig E, Ibarretxe D, et al. STACOV-XULA research group. Low HDL and high triglycerides predict COVID-19 severity. Sci Rep. 2021;11(1):7217. doi: 10.1038/s41598-021-86747-5
  54. Medrano M, Cadenas-Sanchez C, Oses M, et al. Changes in lifestyle behaviours during the COVID-19 confinement in Spanish children: A longitudinal analysis from the MUGI project. Pediatr Obes. 2021;16(4):e12731. doi: 10.1111/ijpo.12731
  55. Miesbach W. Pathological Role of Angiotensin II in Severe COVID-19. TH open. 2020;4(2):e138–e144. doi: 10.1055/s-0040-1713678
  56. Mirzaei F, Khodadadi I, Vafaei SA, et al. Importance of hyperglycemia in COVID-19 intensive-care patients: Mechanism and treatment strategy. Prim Care Diabetes. 2021;15(3):409–416. doi: 10.1016/j.pcd.2021.01.002
  57. Obesity: missing the 2025 global targets. World Obesity Federation. 2020 [Internet]. [cited 2021 Jul 9]. Available from: https://data.worldobesity.org/publications/WOF-Missing-the-2025-Global-Targets-Report-FINAL-WEB.pdf
  58. Okada-Iwabu M, Iwabu M, Ueki K, et al. Perspective of Small-Molecule AdipoR Agonist for Type 2 Diabetes and Short Life in Obesity. Diabetes Metab J. 2015;39(5): 363–372. doi: 10.4093/dmj.2015.39.5.363
  59. Petrilli CM, Jones SA, Yang J. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study. The BMJ. 2020;369: m1966. doi: 10.1136/bmj.m1966
  60. Petrilli CM, Jones SA, Yang J, et al. Factors associated with hospitalization and critical illness among 4,103 patients with COVID-19 disease in New York City. medRxiv. 2020. doi: 10.1101/2020.04.08.20057794
  61. Richardson S, Hirsch JS, Narasimhan M, et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA. 2020;323(20): 2052–2059. doi: 10.1001/jama.2020.6775
  62. Roca-Ho H, Palau V, Gimeno J, et al. Angiotensin-converting enzyme 2 influences pancreatic and renal function in diabetic mice. Lab Invest. 2020;100(9): 1169–1183. doi: 10.1038/s41374-020-0440-5
  63. Roccaforte V, Daves M, Lippi G, et al. Altered lipid profile in patients with COVID-19 infection. JLPM. 2021;6. doi: 10.21037/jlpm-20-98
  64. Rottoli M, Bernante P, Belvedere A, et al. How important is obesity as a risk factor for respiratory failure, intensive care admission and death in hospitalised COVID-19 patients? Results from a single Italian centre. Eur J Endocrinol. 2020;183(4):389–397. doi: 10.1530/EJE-20-0541
  65. Rundle AG, Park Y, Herbstman JB, et al. COVID-19-related school closings and risk of weight gain among children. Obesity (Silver Spring). 2020;28(6): 1008–1009. doi: 10.1002/oby.22813
  66. Ruotolo G, Howard BV. Dyslipidemia of the metabolic syndrome. Curr Cardiol Rep. 2002;4:494–500. doi: 10.1007/s11886-002-0113-6
  67. Santos A, Magro DO, Evangelista-Poderoso R, Saad MJA. Diabetes, obesity, and insulin resistance in COVID-19: molecular interrelationship and therapeutic implications. Diabetol Metab Syndr. 2021;13(23):1–14. doi: 10.1186/s13098-021-00639-2
  68. Savoia A, Volpe M, Kreutz R. Hypertension, a Moving Target in COVID-19. Circ Res. 2021;128(7): 1062–1079. doi: 10.1161/CIRCRESAHA.121.318054
  69. Scheen AJ. Metformin and COVID-19: from cellular mechanisms to reduced mortality. Diabetol Metab J. 2020;46(6):423–426. doi: 10.1016/j.diabet.2020.07.006
  70. Sharma S, Ray A, Sadasivam B. Metformin in COVID-19: a possible role beyond diabetes. Diabetes Res Clin Pract. 2020;164:108183. doi: 10.1016/j.diabres.2020.108183
  71. Shimobayashi M, Albert V, Woelnerhanssen B, et al. Insulin resistance causes inflammation in adipose tissue. J Clin Investig. 2018;128(4):1538–1550. doi: 10.1172/JCI96139
  72. Shoemaker R, Yiannikouris F, Thatcher S, Cassis L. ACE2 deficiency reduces β-cell mass and impairs β-cell proliferation in obese C57BL/6 mice. Am J Physiol – Endocrinol Metab. 2015;309(7):E621–E631. doi: 10.1152/ajpendo.00054.2015
  73. Siddiqi HK, Mehra MR. COVID-19 illness in native and immunosuppressed states: A clinical-therapeutic staging proposal. J Heart Lung Transplant. 2020;39(5): 405–407. doi: 10.1016/j.healun.2020.03.012
  74. Simonnet A, Chetboun M, Poissy J, et al. LICORN and the Lille COVID-19 and Obesity study group. High prevalence of obesity in Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation. Obesity (Silver Spring). 2020;28(7):1195–1199. doi: 10.1002/oby.23006
  75. Singh AK, Singh R. Hyperglycemia without diabetes and new-onset diabetes are both associated with poorer outcomes in COVID-19. Diabetes Res Clin Pract. 2020;167:108382. doi: 10.1016/j.diabres.2020.108382
  76. Srikanthan K, Feyh A, Visweshwar H, et al. Systematic Review of Metabolic Syndrome Biomarkers: A Panel for Early Detection, Management, and Risk Stratification in the West Virginian Population. Int J Med Sci. 2016;13(1):25–38. doi: 10.7150/ijms.13800
  77. Stefan N, Birkenfeld AL, Schulze MB, Ludwig DS. Obesity and impaired metabolic health in patients with COVID-19. Nature Review. Endocrinology. 2020;16: 341–342. doi: 10.1038/s41574-020-0364-6
  78. Steinberg E, Wright E, Kushner B. In Young Adults with COVID-19, Obesity Is Associated with Adverse Outcomes. West JEM: Integrating Emergency Care with Population Health. 2020;21(4):752–755. doi: 10.5811/westjem.2020.5.47972
  79. Styne DM, Arslanian SA, Connor EL, et al Pediatric Obesity-Assessment, Treatment, and Prevention: An Endocrine Society Clinical Practice Guideline. Journal Clin Endocrinol Metabol. 2017;102(3):709–757. doi: 10.1210/jc.2016-2573
  80. Tsubai T, Noda Y, Ito K, et al. Insulin elevates leptin secretionand mRNA levels via cyclicAMP in 3T3-L1 adipocytesdeprived of glucose. Heliyon. 2016;2(11): e00194. doi: 10.1016/j.heliyon.2016.e00194
  81. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11): 1061–1069. doi: 10.1001/jama.2020.1585
  82. Wang G, Zhang Q, Zhao X, et al. Low high-density lipoprotein level is correlated with the severity of COVID-19 patients: an observational study. Lipids Health Dis. 2020;19:204. doi: 10.1186/s12944-020-01382-9
  83. Wei X, Zeng W, Su J, et al. Hypolipidemia is associated with the severity of COVID-19. J Clin Lipidol. 2020;14(3):297–304. doi: 10.1016/j.jacl.2020.04.008
  84. WHO guidelines on physical activity, sedentary behavior and sleep for children under 5 years of age. 2019 [Internet]. [cited 2021 Jul 7]. Available from: https://apps.who.int/iris/handle/10665/311664
  85. Williamson EJ, Walker AJ, Bhaskaran K, et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature. 2020;584:430–436. doi: 10.1038/s41586-020-2521-4
  86. Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan. China JAMA Internal Medicine. 2020;180(7): 934–943. doi: 10.1001/jamainternmed.2020.0994
  87. Xie J, Tong Z, Guan X, et al. Clinical Characteristics of Patients Who Died of Coronavirus Disease 2019 in China. JAMA Network Open. 2020;3(4):e205619. doi: 10.1001/jamanetworkopen.2020.5619
  88. Yamauchi T, Kamon J, Waki H, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med. 2001;7(8):941–946. doi: 10.1038/90984
  89. Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8(5):475–481. doi: 10.1016/S2213-2600(20)30079-5
  90. Zeller M, Danchin N, Simon D, et al. French Registry of Acute ST-Elevation and Non-ST-Elevation Myocardial Infarction investigators. Impact of type of preadmission sulfonylureas on mortality and cardiovascular outcomes in diabetic patients with acute myocardial infarction. J Clin Endocrinol Metab. 2010;95(11): 4993–5002. doi: 10.1210/jc.2010-0449
  91. Zhang W, Xu YZ, Liu B, et al. Pioglitazone upregulates angiotensin converting enzyme 2 expression in insulin-sensitive tissues in rats with high-fat diet-induced nonalcoholic steatohepatitis. The Scientific World Journal. 2014:603409. doi: 10.1155/2014/603409
  92. Zhu L, She ZG, Cheng X, et al. Association of blood glucose control and outcomes in patients with COVID-19 and pre-existing type 2 diabetes. Cell Metab. 2020;31(6): 1068–1077. doi: 10.1016/j.cmet.2020.04.021

Copyright (c) 2021 Ivanov D.O., Uspenskiy Y.P., Sarana A.M., Fominykh Y.A., Sousova I.V., Zakharov D.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies