Visualization capabilities of experimental oncological models in small laboratory animals

Cover Page

Cite item

Full Text

Abstract

For a long time non-invasive imaging methods have been inaccessible in preclinical practice; their introduction lately has broadened the boundaries of relevant studies and felicitated new approaches to solving fundamental problems. Up-to-date imaging methods constitute an essential component of preclinical and translational biomedical research allowing quick and non-invasive extended representation of structural organization and functional characteristics of pathological processes in vivo. Methods of radiation diagnosis and nuclear magnetic resonance allow to assess the state of bones, soft tissues, internal organs, blood vessels and peripheral nerve fibers in various animals, not only mammals, but also fish, amphibians, reptiles and insects. Multiparametric studies can uniquely localize any anatomical structure or pathological process. However, not all existing techniques are applicable to various oncological models of small laboratory animals.

About the authors

Valeria A. Pechatnikova

Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”

Author for correspondence.
Email: floluttrell@gmail.com

Researcher, Trials Center of Radiopharmaceutical

Russian Federation, Gatchina

Alexander P. Trashkov

Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”

Email: alexandr.trashkov@gmail.com

MD, PhD, Head, Trials Center of Radiopharmaceutical

Russian Federation, Gatchina

Maria A. Zelenenko

Sechenov Institute of Ephysiology and Biochemistry, Russian Academy of Sciences

Email: magu56110@gmail.com

MD, Researcher, Experimental Pharmacology Department

Russian Federation, Saint Petersburg

Nikolay A. Verlov

Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”

Email: virlov@gmail.com

PhD, Senior researcher, Trials Center of Radiopharmaceutical

Russian Federation, Gatchina

Grigorii A. Chizh

Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”

Email: ya.grisha234@yandex.ru

Junior Researcher, Molecular and Radiation Biophysics Division

Russian Federation, Gatchina

Michael G. Khotin

Institute of Cytology RAS

Email: h_mg@mail.ru

PhD, Associate Professor, Head, Cell Technology Center

Russian Federation, Saint Petersburg

Andrei G. Vasiliev

St. Petersburg State Pediatric Medical University

Email: avas7@mail.ru

MD, PhD, Dr. Med. Sci., Head, Pathophysiology Department

Russian Federation, Saint Petersburg

References

  1. Хайцев Н.В., Васильев А.Г., Трашков А.П., и др. Влияние возраста и пола на характер ответных реакций белых крыс при действии хронической гипоксической гипоксии // Педиатр. - 2015. - Т. 6. - № 2. - C. 71-77. [Khaytsev NV, Vasiliev AG, Trashkov AP, et al. The Influence of Sex and Age upon Response of White Rats to Hypoxic Hypoxia. Pediatr (St. Petersburg). 2015;6(2):71-77. (In Russ.)]. doi: 17816/PED6271-77.
  2. Agris PF. C.I.D. Proton Nuclear Magnetic Resonance of Intact Friend Leukemia Cells: Phosphorylcholine Increase During Differentiation. Science. 1982;216(4552):1325-7. doi: 10.1126/science.7079765.
  3. Al-Saffar NMS. Noninvasive Magnetic Resonance Spectroscopic Pharmacodynamic Markers of the Choline Kinase Inhibitor MN58b in Human Carcinoma Models. Cancer Res. 2006;66(1):427-434. doi: 10.1158/0008-5472.CAN-05-1338.
  4. Au JT, Craig G, Longo V, Zanzonico P. Gold Nanoparticles Provide Bright Long-Lasting Vascular Contrast for CT Imaging. American Journal of Roentgenology. 2013;200:1347-1351. doi: 10.2214/AJR.12.8933.
  5. Bilgen M. Feasibility and Merits of Performing Preclinical Imaging on Clinical Radiology and Nuclear Medicine Systems. International Journal of Molecular Imaging. 2013:923823. doi: 10.1155/2013/923823.
  6. Bottomley PA. Selective Volume Method for Performing Localized NMR Spectroscopy. 1984.
  7. Chase JR, Rothman DL, S.R. Flux Control in the Rat Gastrocnemius Glycogen Synthesis Pathway by in vivo 13C/31P NMR Spectroscopy. Am J Physiol Endocrinol Metab. 2001;280(4):E598-E607.
  8. Dinkel J, Bartling SH, Kuntz J, et al. Intrinsic Gating for Small-Animal Computed Tomography: A Robust ECG-Less Paradigm for Deriving Cardiac Phase Information and Functional Imaging. Circulation: Cardiovascular Imaging. 2008;1(3):235-243. doi: 10.1161/CIRCIMAGING.108.784702.
  9. Hagga JR, Dogra VS, Forsting M, et al. CT and MRI of the Whole Body. 5th ed. Mosby; 2008.
  10. Higano S, Yun XKT, Kumabe T, et al. Malignant Astrocytic Tumors: Clinical Importance of Apparent Diffusion Coefficient in Prediction of Grade and Prognosis. Radiology. 2006;241(3):839-846. doi: 10.1148/radiol.2413051276.
  11. Howe FA. An Assessment of Artefacts in Localized and Non-Localized 31P MRS Studies of Phosphate Metabolites and Ph in Rat Tumours. NMR Biomed. 1993;6(1):43-52. doi: 10.1002/nbm.1940060108.
  12. Kiessling F, Pichler BJ. Small Animal Imaging. Ed by F. Kiessling, B.J. Pichler. Berlin, Heidelberg: Springer Berlin Heidelberg; 2011.
  13. Knopp MV, Bourne MW, Sardanelli F. Gadobenate Dimeglumine-Enhanced MRI of the Breast: Analysis of Dose Response and Comparison with Gadopentetate Dimeglumine. AJR. 2003;181:663-676. doi: 10.2214/ajr.181.3.1810663.
  14. Mankoff DA. A Definition of Molecular Imaging. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine. 2007;48(6):18N, 21N.
  15. Mcknight TR, Lamborn KR, Love TD, Berger MS. Correlation of Magnetic Resonance Spectroscopic and Growth Characteristics within Grades II and III Gliomas. Journal of Neurosurgery. 2007;106(4):660-666. doi: 10.3171/jns.2007.106.4.660.
  16. Runge V, Clanton JA, Lukehart CM, Partain CL. Paramagnetic Agents for Contrast-Enhanced NMR Imaging: A Review. American Journal of Roentgenology. 1983;141(6):1209-1215. doi: 10.2214/ajr.141.6.1209.
  17. Smith MA, Koutcher JA, Zakian KL. J-Difference Lactate Editing at 3.0 Tesla in the Presence of Strong Lipids. J Magn Reson Imaging. 2008;28(6):1492-1498. doi: 10.1002/jmri.21584.
  18. Tamiya T, Kinoshita K, Ono Y, et al. Proton Magnetic Resonance Spectroscopy Reflects Cellular Proliferative Activity in Astrocytomas. Neuroradiology. 2000;42(5):333-338. doi: 10.1007/s002340050894.
  19. Vaquero JJ, Kinahan P. Positron Emission Tomography: Current Challenges and Opportunities for Technological Advances in Clinical and Preclinical Imaging Systems. Annual Review of Biomedical Engineering. 2015;(17):385-414. doi: 10.1146/annurev-bioeng-071114-040723.
  20. Yang S, Wang H, Wang H, et al. Glioma Grading: Sensitivity, Specificity, and Predictive Values of Perfusion MR Imaging and Proton MR Spectroscopic Imaging Compared with Conventional MR Imaging. Am J Neuroradiol. 2003;24(10):1989-1998.

Copyright (c) 2018 Pechatnikova V.A., Trashkov A.P., Zelenenko M.A., Verlov N.A., Chizh G.A., Khotin M.G., Vasiliev A.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies