Роль микроРНК в канцерогенезе немелкоклеточного рака легкого

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Введение. Рак легкого является самым распространенным злокачественным новообразованием. Несмотря на большие достижения в таргетной терапии, иммунотерапии и химиотерапии, немелкоклеточный рак легкого остается основной причиной смерти от рака во всем мире. Развитие опухоли ― сложный процесс, на который могут влиять как факторы окружающей среды, так и генетическая предрасположенность. Хотя онкогенные факторы широко изучены, основные механизмы, способствующие онкогенезу, в настоящее время остаются невыясненными. Таким образом, исследования онкогенных механизмов, в т. ч. с вовлечением микрорибонуклеиновой кислоты (миРНК) являются важными для диагностики и лечения злокачественных новообразований. МиРНК ― это класс малых некодирующих рибонуклеиновых кислот, которые участвуют в разнообразных клеточных биологических процессах, включая эпителиально-мезенхимальный переход, апоптоз, пролиферацию, инвазию и метастазирование раковых клеток. В недавно опубликованных работах показано, что характер течения онкологического заболевания можно спрогнозировать путем анализа уровня экспрессии некоторых миРНК. Таким образом, миРНК являются перспективной диагностической и терапевтической мишенью при онкологических заболеваниях.

Заключение. В настоящем обзоре обобщены данные о роли в канцерогенезе и прогностической значимости ряда миРНК: миРНК-128, миРНК-4500, миРНК-222, миРНК-224, миРНК-124, миРНК-125б, миРНК-127, миРНК-129-2, миРНК-137 и миРНК-375, ― при немелкоклеточном раке легкого.

Об авторах

Марина Сергеевна Губенко

Научно-исследовательский институт общей патологии и патофизиологии

Email: artz_marina@mail.ru
ORCID iD: 0000-0001-5439-9713
SPIN-код: 4992-7397
Россия, Москва

Виталий Игоревич Логинов

Научно-исследовательский институт общей патологии и патофизиологии

Email: werwolf2000@mail.ru
ORCID iD: 0000-0003-2668-8096
SPIN-код: 6249-5883

к.б.н.

Россия, Москва

Алексей Михайлович Бурденный

Научно-исследовательский институт общей патологии и патофизиологии

Email: koldun.pro@mail.ru
ORCID iD: 0000-0002-9398-8075
SPIN-код: 4429-4288

к.б.н.

Россия, Москва

Ирина Валерьевна Пронина

Научно-исследовательский институт общей патологии и патофизиологии

Email: p.lenyxa@yandex.ru
ORCID iD: 0000-0002-0423-7801
SPIN-код: 5706-2369

к.б.н.

Россия, Москва

Светлана Викторовна Хохлова

Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В. И. Кулакова

Email: svkhokhlova@mail.ru
ORCID iD: 0000-0002-4121-7228
SPIN-код: 6009-4616

д.м.н., профессор

Россия, Москва

Сергей Сергеевич Перцов

Научно-исследовательский институт нормальной физиологии имени П. К. Анохина

Автор, ответственный за переписку.
Email: s.pertsov@mail.ru
ORCID iD: 0000-0001-5530-4990
SPIN-код: 3876-0513

д.м.н., профессор

Россия, Москва

Список литературы

  1. Yang H.–W., Liu G.–H., Liu Y.–Q., et al. Over–expression of microRNA-940 promotes cell proliferation by targeting GSK3beta and sFRP1 in human pancreatic carcinoma // Biomedicine & Pharmacotherapy. 2016. Vol. 83. P. 593–601. doi: 10.1016/j.biopha.2016.06.057
  2. Lee R.C., Feinbaum R.L., Ambros V. The C. elegans heterochronic gene lin-4encodes small RNAs with antisense complementarity to lin-14 // Cell. 1993. Vol. 75, № 5. P. 843–854. doi: 10.1016/0092-8674(93)90529-y
  3. Esteller M. Non-coding RNAs in human disease // Nature Reviews. Genetics. 2011. Vol. 12, № 12. P. 861–874. doi: 10.1038/nrg3074
  4. Jin M., Zhang T., Liu C., et al. miRNA-128 suppresses prostate cancer by inhibiting BMI-1 to inhibit tumor–initiating cells // Cancer Research. 2014. Vol. 74, № 15. P. 4183–4195. doi: 10.1158/0008-5472.CAN-14-0404
  5. Chen Z., Lai T.–C., Jan Y.–H., et al. Hypoxia–responsive miRNAs target argonaute 1 to promote angiogenesis // The Journal of Clinical Investigation. 2013. Vol. 123, № 3. P. 1057–1067. doi: 10.1172/JCI65344
  6. Ho J.J.D., Metcalf J.L., Yan M.S., et al. Functional importance of Dicer protein in the adaptive cellular response to hypoxia // The Journal of Biological Chemistry. 2012. Vol. 287, № 34. P. 29003–29020. doi: 10.1074/jbc.m112.373365
  7. Medina P.P., Nolde M., Slack F.J. OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma // Nature. 2010. Vol. 467, № 7311. P. 86–90. doi: 10.1038/nature09284
  8. Liu H.–T., Xing A.–Y., Chen X., et al. MicroRNA-27b, microRNA-101 and microRNA-128 inhibit angiogenesis by down–regulating vascular endothelial growth factor C expression in gastric cancers // Oncotarget. 2015. Vol. 6, № 35. P. 37458–37470. doi: 10.18632/oncotarget.6059
  9. Markou A., Liang Y., Lianidou E. Prognostic, therapeutic and diagnostic potential of microRNAs in non-small cell lung cancer // Clinical Chemistry and Laboratory Medicine. 2011. Vol. 49, № 10. P. 1591–1603. doi: 10.1515/CCLM.2011.661
  10. Zhang R., Liu C., Niu Y., et al. MicroRNA-128-3p regulates mitomycin C-induced DNA damage response in lung cancer cells through repressing SPTAN1 // Oncotarget. 2016. Vol. 8, № 35. P. 58098–58107. doi: 10.18632/oncotarget.12300
  11. Zeng X.C., Li L., Wen H., et al. MicroRNA-128 inhibition attenuates myocardial ischemia/reperfusion injury–induced cardiomyocyte apoptosis by the targeted activation of peroxisome proliferator–activated receptor gamma // Molecular Medicine Reports. 2016. Vol. 14, № 1. P. 129–136. doi: 10.3892/mmr.2016.5208
  12. Liu X., Gao Y., Lu Y., et al. Upregulation of NEK2 is associated with drug resistance in ovarian cancer // Oncology Reports. 2014. Vol. 31, № 2. P. 745–754. doi: 10.3892/or.2013.2910
  13. Zhao D., Han W., Liu X., et al. MicroRNA–128 promotes apoptosis in lung cancer by directly targeting NIMA–related kinase 2 // Thoracic Cancer. 2017. Vol. 8, № 4. P. 304–311. doi: 10.1111/1759-7714.12442
  14. Zhang L., Qian J., Qiang Y., et al. Down–regulation of miR-4500 promoted non-small cell lung cancer growth // Cellular Physiology and Biochemistry. 2014. Vol. 34, № 4. P. 1166–1174. doi: 10.1159/000366329
  15. Li Z.–Y., Zhang Z.–Z., Bi H., et al. MicroRNA-4500 suppresses tumor progression in non-small cell lung cancer by regulating STAT3 // Molecular Medicine Reports. 2019. Vol. 20, № 6. P. 4973–4983. doi: 10.3892/mmr.2019.10737
  16. Wei F., Ma C., Zhou T., et al. Exosomes derived from gemcitabine-resistant cells transfer malignant phenotypic traits via delivery of miRNA-222-3p // Molecular Cancer. 2017. Vol. 16, № 1. P. 132. doi: 10.1186/s12943-017-0694-8
  17. Ulivi P., Petracci E., Marisi G., et al. Prognostic role of circulating miRNAs in early-stage non-small cell lung cancer // Journal of Clinical Medicine. 2019. Vol. 8, № 2. P. 131. doi: 10.3390/jcm8020131
  18. Wang Y., Lee A.T.C., Ma J.Z.I., et al. Profiling microRNA expression in hepatocellular carcinoma reveals microRNA-224 up-regulation and apoptosis inhibitor-5 as a microRNA-224-specific target // The Journal of Biological Chemistry. 2008. Vol. 283, № 19. P. 13205–13215. doi: 10.1074/jbc.m707629200
  19. Wang Y., Ren J., Gao Y., et al. MicroRNA-224 targets SMAD family member 4 to promote cell proliferation and negatively influence patient survival // PLoS One. 2013. Vol. 8, № 7. P. e68744. doi: 10.1371/journal.pone.0068744
  20. Huang L., Dai T., Lin X., et al. MicroRNA-224 targets RKIP to control cell invasion and expression of metastasis genes in human breast cancer cells // Biochemical and Biophysical Research Communications. 2012. Vol. 425, № 2. P. 127–133. doi: 10.1016/j.bbrc.2012.07.025
  21. Goto Y., Nishikawa R., Kojima S., et al. Tumour-suppressive microRNA-224 inhibits cancer cell migration and invasion via targeting oncogenic TPD52 in prostate cancer // FEBS Letters. 2014. Vol. 588, № 10. P. 1973–1982. doi: 10.1016/j.febslet.2014.04.020
  22. Wang H., Zhu L.–J., Yang Y.–C., et al. MiR-224 promotes the chemoresistance of human lung adenocarcinoma cells to cisplatin via regulating G₁/S transition and apoptosis by targeting p21(WAF1/CIP1) // British Journal of Cancer. 2014. Vol. 111, № 2. P. 339–354. doi: 10.1038/bjc.2014.157
  23. Zhu X., Kudo M., Huang X., et al. Frontiers of MicroRNA Signature in Non-small Cell Lung Cancer // Frontiers in Cell and Developmental Biology. 2021. Vol. 9. P. 643942. doi: 10.3389/fcell.2021.643942
  24. Li Z., Wang X., Li W., et al. miRNA-124 modulates lung carcinoma cell migration and invasion // International Journal of Clinical Pharmacology and Therapeutics. 2016. Vol. 54, № 8. P. 603–612. doi: 10.5414/CP202551
  25. Yang Q., Wan L., Xiao C., et al. Inhibition of LHX2 by miR-124 suppresses cellular migration and invasion in non-small cell lung cancer // Oncology Letters. 2017. Vol. 14, № 3. P. 3429–3436. doi: 10.3892/ol.2017.6607
  26. Liu Y.–Y., Zhang L.–Y., Du W.–Z. Circular RNA circ-PVT1 contributes to paclitaxel resistance of gastric cancer cells through the regulation of ZEB1 expression by sponging miR-124-3p // Bioscience Reports. 2019. Vol. 39, № 12. P. BSR20193045. doi: 10.1042/BSR20193045
  27. Hu D., Li M., Su J., et al. Dual-targeting of miR-124-3p and ABCC4 Promotes Sensitivity to Adriamycin in Breast Cancer Cells // Genetic Testing and Molecular Biomarkers. 2019. Vol. 23, № 3. P. 156–165. doi: 10.1089/gtmb.2018.0259
  28. Yan G., Li Y., Zhan L., et al. Decreased miR-124-3p promoted breast cancer proliferation and metastasis by targeting MGAT5 // American Journal of Cancer Research. 2019. Vol. 9, № 3. P. 585–596.
  29. Cai J., Huang J., Wang W., et al. miR-124-3p Regulates FGF2-EGFR Pathway to Overcome Pemetrexed Resistance in Lung Adenocarcinoma Cells by Targeting MGAT5 // Cancer Management and Research. 2020. Vol. 12. P. 11597–11609. doi: 10.2147/CMAR.S274192
  30. Zhao Y., Bhattacharjee S., Jones B.M., et al. Regulation of neurotropic signaling by the inducible, NF-kB-sensitive miRNA-125b in Alzheimer's disease (AD) and in primary human neuronal-glial (HNG) cells // Molecular Neurobiology. 2014. Vol. 50, № 1. P. 97–106. doi: 10.1007/s12035-013-8595-3
  31. Shaham L., Binder V., Gefen N., et al. MiR-125 in normal and malignant hematopoiesis // Leukemia. 2012. Vol. 26, № 9. P. 2011–2018. doi: 10.1038/leu.2012.90
  32. Wang Y., Zhao M., Liu J., et al. MiRNA-125b regulates apoptosis of human non-small cell lung cancer via the PI3K/Akt/GSK3β signaling pathway // Oncology Reports. 2017. Vol. 38, № 3. P. 1715–1723. doi: 10.3892/or.2017.5808
  33. Chen J., Wang M., Guo M., et al. miR-127 regulates cell proliferation and senescence by targeting BCL6 // PLoS One. 2013. Vol. 8, № 11. P. e80266. doi: 10.1371/journal.pone.0080266
  34. Guo L.–H., Li H., Wang F., et al. The Tumor Suppress or Roles of miR-433 and miR-127 in Gastric Cancer // International Journal of Molecular Sciences. 2013. Vol. 14, № 7. P. 14171–14184. doi: 10.3390/ijms140714171
  35. Shi L., Wang Y., Lu Z., et al. miR-127 promotes EMT and stem-like traits in lung cancer through a feed-forward regulatory loop // Oncogene. 2017. Vol. 36, № 12. P. 1631–1643. doi: 10.1038/onc.2016.332
  36. Xiao Y., Li X., Wang H., et al. Epigenetic regulation of miR-129-2 and its effects on the proliferation and invasion in lung cancer cells // Journal of Cellular and Molecular Medicine. 2015. Vol. 19, № 9. P. 2172–2180. doi: 10.1111/jcmm.12597
  37. Theriault B.L., Dimaras H., Gallie B.L., et al. The genomic landscape of retinoblastoma: a review // Clinical & Experimental Ophthalmology. 2014. Vol. 42, № 1. P. 33–52. doi: 10.1111/ceo.12132
  38. Bin C., Xiaofeng H., Wanzi X. The effect of microRNA-129 on the migration and invasion in NSCLC cells and its mechanism // Experimental Lung Research. 2018. Vol. 44, № 6. P. 280–287. doi: 10.1080/01902148.2018.1536174
  39. Zhu X., Li Y., Shen H., et al. miR-137 inhibits the proliferation of lung cancer cells by targeting Cdc42 and Cdk6 // FEBS Letters. 2013. Vol. 587, № 1. P. 73–81. doi: 10.1016/j.febslet.2012.11.004
  40. Bi Y., Han Y., Bi H., et al. miR-137 impairs the proliferative and migratory capacity of human non-small cell lung cancer cells by targeting paxillin // Human Cell. 2014. Vol. 27, № 3. P. 95–102. doi: 10.1007/s13577-013-0085-4
  41. Zhang B., Liu T., Wu T., et al. microRNA-137 functions as a tumor suppressor in human non-small cell lung cancer by targeting SLC22A18 // International Journal of Biological Macromolecules. 2015. Vol. 74. P. 111–118. doi: 10.1016/j.ijbiomac.2014.12.002
  42. Noguera–Uclés J.F., Boyero L., Salinas A., et al. The Roles of Imprinted SLC22A18 and SLC22A18AS Gene Overexpression Caused by Promoter CpG Island Hypomethylation as Diagnostic and Prognostic Biomarkers for Non-Small Cell Lung Cancer Patients // Cancers (Basel). 2020. Vol. 12, № 8. P. 2075. doi: 10.3390/cancers12082075
  43. Shen H., Wang L., Ge X., et al. MicroRNA-137 inhibits tumor growth and sensitizes chemosensitivity to paclitaxel and cisplatin in lung cancer // Oncotarget. 2016. Vol. 7, № 15. P. 20728–20742. doi: 10.18632/oncotarget.8011
  44. Wilting S.M., Verlaat W., Jaspers A., et al. Methylation–mediated transcriptional repression of microRNAs during cervical carcinogenesis // Epigenetics. 2013. Vol. 8, № 2. P. 220–228. doi: 10.4161/epi.23605
  45. Yu L., Todd N.W., Xing L., et al. Early detection of lung adenocarcinoma in sputum by a panel of microRNA markers // International Journal of Cancer. 2010. Vol. 127, № 12. P. 2870–2878. doi: 10.1002/ijc.25289
  46. Li Y., Jiang Q., Xia N., et al. Decreased Expression of MicroRNA-375 in Nonsmall Cell Lung Cancer and its Clinical Significance // The Journal of International Medical Research. 2012. Vol. 40, № 5. P. 1662–1669. doi: 10.1177/030006051204000505
  47. Cheng L., Zhan B., Luo P., et al. miRNA-375 regulates the cell survival and apoptosis of human non-small cell carcinoma by targeting HER2 // Molecular Medicine Reports. 2017. Vol. 15, № 3. P. 1387–1392. doi: 10.3892/mmr.2017.6112

© ООО "Эко-Вектор", 2022


 


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах