The effect of arginine on the activity and compartmentalization of lysosomal cysteine proteinases of parenchymatous organs in oxidative stress on the background of experimental hyperhomocysteinemia

Cover Page

Cite item

Abstract

Aim. Evaluation of the effect of arginine on the activity and intracellular distribution of cathepsins B, L, H in liver, kidney and lung tissue in experimental hyperhomocysteinemia and developing on its background oxidative damage of proteins.

Materials and Methods. Hyperhomocysteinemia in male rats of the Wistar line was formed by daily oral administration of a suspension of methionine at a dose of 1.5 g/kg 2 times a day for 21 days, to study the action of arginine the substance was used orally from 12 to 21 days of methionine administration at a dose of 500 mg/kg. In tissue homogenates measurements were carried out in cytoplasmic and lysosomal fractions. The state of oxidative modification of proteins was evaluated by analysis of the absorption spectrum of carbonyl derivatives, the activity of cathepsins B, L, H was determined by spectrofluorometric method, the activity of acid phosphatase – by the unified method «at the end point».

Results. In the cytoplasmic (nonsedimentary) fraction of the liver and kidney reduced activity of cathepsin L (in both tissues), cathepsin B (in the kidney), cathepsin H (in the liver) was found on the background of the increase in the products of proteins oxidative modification in experimental hyperhomocysteinemia. The introduction of arginine in experimental hyperhomocysteinemia completely eliminated the manifestations of oxidative damage of proteins, partially correcting the activity of enzymes: there was an increase in the activity in non sedimentary (cytoplasmic) fraction due to intracellular redistribution of enzymes. There is found inverse correlation between the content of oxidative carbonylation products of proteins and the activity of cathepsins in the non sedimentary fraction, as well as the proportion of their non sedimentary activity.

Conclusions. 1. Arginine at a dose of 500 mg/kg at a 10day administration completely corrects the increase in the products of oxidative protein carbonylation that develops in experimental hyperhomocysteinemia. 2. Under the influence of arginine there is an increase in the reduced due to isolated hyperhomocysteinemia activity of cathepsins B, L, H in the cytoplasmic fraction of the liver and kidney due to intracellular redistribution of enzymes. 3. Arginine administration causes nonselective increase of the lysosomal membrane permeability, and as a result, changes in the compartmentalization of lysosomal cysteine proteases. 4. The inverse correlation of the level of protein oxidative modification products with the activity of cathepsins in cytoplasmic (nonsedimentary) fractions, and the proportions of their nonsedimentary activity, suggesting the presence of contribution of changes in the compartmentalization of lysosomal cysteine proteinases in developing under the action of arginine compensation of oxidative stress in experimental hyperhomocysteinemia.

About the authors

Maria A. Fomina

Ryazan State Medical University

Author for correspondence.
Email: marya.fom@yandex.ru
ORCID iD: 0000-0001-5550-0625
SPIN-code: 1480-4281

MD, PhD, Associate Professor, Associate Professor of Biological Chemistry with a Course of Clinical Laboratory Diagnostics of the Faculty of Additional Professional Education

Russian Federation, 9, Vysokovoltnaja str., Ryazan, 390026

Alexander A. Terent'ev

Pirogov Russian National Research Medical University

Email: marya.fom@yandex.ru
ORCID iD: 0000-0003-2453-8377
SPIN-code: 1141-6524

MD, Grand PhD, Professor, Corresponding Member of Russian Academy оf Sciences, Professor of Department of Biochemistry and Molecular Biology of the Medical Faculty

Russian Federation, 1, Ostrovityanova street, Moscow, 117997

References

  1. Jakubowski H, Głowacki R. Chemical biology of homocystein ethiolactone and related metabolites. Adv Clin Chem. 2011;55:81103. doi:10. 1016/B9780123870421.000058
  2. Muravleva LE, MolotovLuchansky1 VB, Klyuyev DA, et al. Okislitel'naya modifikatsiya belkov: problemyi perspektiv yissledovaniya. Fundamental'nye issledovaniya. 2010;1: 748. (In Russ).
  3. Yan LJ. Analysis of oxidative modification of proteins. Current Protocols in Protein Science. 2009;56(1):14.4.114.4.28.
  4. Pupyshev AB. Permeabilizatsiya lizosomal'nykh membrane kak apoptogennyy faktor. Citologiya. 2011;53(4):31324. (In Russ).
  5. Il'ichyova AS, Fomina MA. Vliyanie Larginina I karnitina na aktivnost' katepsinov L, H i pronitsaemost' lizosomal'noy membrany v serdechnoy myshtse pri vyrazhennoy gipergomotsisteinemii. Kazanskij medicinskij zhurnal. 2015;96(5):81924. (In Russ). doi:10.17750/ KMJ2015819
  6. Medvedev DV, Zvyagina VI, Fomina MA. Sposob modelirovaniya tyazheloy formy gipergomotsisteinemii u krys. IP Pavlov Medical Biological Herald.2014;22(4):426. (In Russ).
  7. Pokrovskiy MV, Pokrovskaya TG, Kochkarov VI. Endotelioprotektornye effekty Larginina pri modelirovanii defitsita okisi azota. Еksperimental'naya i klinicheskaya farmakologiya. 2008;71(2):2931. (In Russ).
  8. Dubinina EE. Produkty metabolizma kisloroda v funktsional'noy aktivnosti kletok (zhizn' i smert', sozidanie i razrushenie). Fiziologicheskie i klinikobiokhimicheskie aspekty. SPb.: Izdatel'stvo «Meditsinskaya pressa»; 2006. (In Russ).
  9. Fomina MA, Abalenikhina YuV, Fomina NV, et al. Sposob kompleksnoy otsenki soderzhaniya produktov okislitel'noy modifikatsii belkov v tkanyakh I biologicheskikh zhidkostyakh. Patent RUS №2524667, 27.07.2014. Byul. №21 Available at: http://www1.fips.ru/Archive/ PAT/2014FULL/2014.07.27/INDEX_RU.HTM. Accessed: 23 Jan 2018. (In Russ).
  10. Nikitina YuV, Mukhina IV. Izmeneniya okislitel'nykh protsessov v tkani golovnogo mozga I krovi krys v rannem ontogeneze. Vestnik Nizhegorodskogo universiteta imеni N.I. Lobachevskogo. 2009;6(1):12431. (In Russ).
  11. Barrett AJ, Kirschke H. Cathepsin B, cathepsin H, cathepsin L. Methods in Enzymol. 1981;80:53561.
  12. Boriskina MA. Izmenenie aktivnosti lizosomal'nykh tsisteinovykh proteinaz u bol'nykh khronicheskimi leykozami v dinamike zabolevaniya [dissertation]. Ryazan'; 1996. (In Russ).
  13. Gubskiy YuI, Belenichev IF, Levitskiy EL, et al. Toksikologicheskie posledstviya okislitel'noy modifikatsii belkov pri razlichnykh patologicheskikh sostoyaniyakh. Sovremennye problem toksikologii. 2005;8(3):207. (In Russ).
  14. Il'icheva AS, Fomina MA, Medvedev DV. Kharakteristika produktov okislitel'nogo povrezhdeniya belkov miokarda na fone gipergomotsisteinemii. Science of Young (Eruditio Juvenium). 2014;2(4):3743. (In Russ).
  15. Niu Y, DesMarais TL, Tong Z, et al. Oxidative stress alters global histone modification and DNA methylation. Free Radic Biol Med. 2015;82:228. doi: 10.1016/j.freeradbiomed. 2015. 01.028
  16. DalleDonne I, Rossi R, Colombo R, et al. Biomarkers of oxidative damage in human disease. Clin Chem. 2006;32:60123. doi: 10.1373/clinchem.2005.061408
  17. Vasil'eva OS, Serebrov VYu, Turk B, et al. Izuchenie mekhanizma autokataliticheskoy aktivatsii prokatepsina H in vitro. Elektronnyy zhurnal «Issledovano v Rossii». 2002: 1092102. Available at: http://docplayr.ru/31006556Izucheniemehanizmaautokataliticheskoyaktivaciiprokatepsinahinvitro.html. Accessed: 23 Jan 2018.
  18. Menard R, Carmona E, Takebe S, et al. Autocatalytic processing of recombinant human procathepsin L. Contribution of both intermolecular and unimolecular events in the processing of procathepsin L in vitro. J Biol Chem. 1998;273(8):447884.
  19. Almeida PC, Nantes IL, Chagas JR, et al. Cathepsin B activity regulation. Heparinlike glycosaminogylcans protect human cathepsin B from alkaline pHinduced inactivation. J Biol Chem. 2001;276:94451.
  20. Terman A, Kurz T, Gustafsson B, et al. Lysosomal Labilization. IUBMB Life. 2006; 58(9): 5319. doi: 10.1080/15216540600904885

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Correlation relationships between nonsedimentary activity of cathepsin H of liver and parameters of oxidative carbonylation of proteins

Download (23KB)
3. Fig. 2. Correlation relationships between sedimentary activity of cathepsin H of liver and parameters of oxidative carbonylation of proteins

Download (24KB)
4. Fig. 3. Correlation relationships between sedimentary activity of cathepsin H of liver and parameters of oxidative carbonylation of proteins

Download (25KB)

Copyright (c) 2018 Fomina M.A., Terent'ev A.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies