Structural and functional biochemistry of OATP1B3: from polymorphisms to therapeutic targets

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

INTRODUCTION: Organic Anion Transporting Polypeptide 1B3 (OATP1B3) plays a key role in hepatic transport of endogenous compounds, xenobiotics and drugs. In recent years, new data have been presented on the molecular organization, mechanisms of function and regulation, genetic polymorphisms of OATP1B3, and its clinical significance in pharmacokinetics, diagnosis and treatment. Of particular interest is the extrahepatic expression of the transporter, which opens new prospects for targeted therapy.

AIM: To identify the structural and functional biochemical features of OATP1B3 transporter, its genetic polymorphisms and their impact on pharmacokinetic and therapeutic properties, determine the potential of OATP1B3 for targeted and personalized medicine.

Literature search was conducted using the following keywords: OATP1B3, SLCO1B3, transporter, substrate specificity, regulation, oncology, and hepatocellular carcinoma in Russian and English. Electronic databases providing access to peer-reviewed scientific articles were used: eLibrary, Medline/PubMed, and Google Scholar. The search was conducted between 2000 and 2004 to cover the current data, starting from the first publications on OATP1B3 identification, but also taking into account earlier key works on OATP1B3 identification.

This review presents the biochemical features of OATP1B3 localization, structure, and transport cycle. It also systematizes literature data on substrates, inhibitors, and inducers of the transporter protein, describes regulatory mechanisms and identifies the clinical significance of this transporter protein. OATP1B3 is demonstrated to have tissue-specific localization: it is normally expressed in the liver, but in oncologic pathologies is detected in the cytosol of gastrointestinal and lung tumor cells, where it may participate in signaling pathways. Evidence of high genetic variability of the SLCO1B3 gene is presented. The clinical potential of OATP1B3 is confirmed by its role in diagnostics (liver MRI with gadoxetate) and the possibility of targeted delivery of chemotherapeutic drugs.

CONCLUSION: OATP1B3 is an influx transporter protein that has an important clinical significance participating in transport of statins, cytostatics and diagnostic contrast agents, and its activity is modulated by post-translational modifications.

About the authors

Yuliya V. Abalenikhina

Ryazan State Medical University

Author for correspondence.
Email: abalenihina88@mail.ru
ORCID iD: 0000-0003-0427-0967
SPIN-code: 4496-9027

MD, Dr. Sci. (Medicine), Assistant Professor

Russian Federation, Ryazan

Pelageya D. Ananyeva

Ryazan State Medical University

Email: erokhina.pelageya96@yandex.ru
ORCID iD: 0000-0003-4802-5656
SPIN-code: 1480-6854

MD, Cand. Sci. (Medicine)

Russian Federation, Ryazan

Aleksey V. Shchulkin

Ryazan State Medical University

Email: alekseyshulkin@rambler.ru
ORCID iD: 0000-0003-1688-0017
SPIN-code: 2754-1702

MD, Dr. Sci. (Medicine), Assistant Professor

Russian Federation, Ryazan

Ekaterina D. Mikryukova

Ryazan State Medical University

Email: kate.mikrukova@yandex.ru
ORCID iD: 0009-0006-6457-4777
Russian Federation, Ryazan

Pavel Y. Mylnikov

Ryazan State Medical University

Email: dukeviperlr@gmail.com
ORCID iD: 0000-0001-7829-2494
SPIN-code: 8503-3082

Cand. Sci. (Biology)

Russian Federation, Ryazan

Anna E. Mezina

Ryazan State Medical University

Email: mezinaanya@yandex.ru
ORCID iD: 0009-0000-0238-4771
Russian Federation, Ryazan

Elena N. Yakusheva

Ryazan State Medical University

Email: e.yakusheva@rzgmu.ru
ORCID iD: 0000-0001-6887-4888
SPIN-code: 2865-3080

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Ryazan

References

  1. Alam A, Locher KP. Structure and Mechanism of Human ABC Transporters. Annu Rev Biophys. 2023;52:275–300. doi: 10.1146/annurev-biophys-111622-091232 EDN: EJNAWI
  2. Schlessinger A, Zatorski N, Hutchinson K, Colas C. Targeting SLC transporters: small molecules as modulators and therapeutic opportunities. Trends Biochem Sci. 2023;48(9):801–814. doi: 10.1016/j.tibs.2023.05.011 EDN: CFDMNL
  3. Liu X. SLC Family Transporters. Adv Exp Med Biol. 2019;1141:101–202. doi: 10.1007/978-981-13-7647-4_3
  4. Van de Steeg E, Stránecký V, Hartmannová H, et al. Complete OATP1B1 and OATP1B3 deficiency causes human Rotor syndrome by interrupting conjugated bilirubin reuptake into the liver. J Clin Invest. 2012;122(2):519–528. doi: 10.1172/jci59526
  5. Anabtawi N, Drabison T, Hu S, et al. The role of OATP1B1 and OATP1B3 transporter polymorphisms in drug disposition and response to anticancer drugs: a review of the recent literature. Expert Opin Drug Metab Toxicol. 2022;18(7–8):459–468. doi: 10.1080/17425255.2022.2113380 EDN: SPIFLG
  6. Alam K, Crowe A, Wang X, et al. Regulation of organic anion transporting polypeptides (OATP) 1B1- and OATP1B3-mediated transport: an updated review in the context of OATP-mediated drug-drug interactions. Int J Mol Sci. 2018;19(3):855. doi: 10.3390/ijms19030855
  7. Roth M, Obaidat A, Hagenbuch B. OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br J Pharmacol. 2012;165(5):1260–1287. doi: 10.1111/j.1476-5381.2011.01724.x EDN: YCKJRR
  8. König J, Cui Y, Nies AT, Keppler D. Localization and genomic organization of a new hepatocellular organic anion transporting polypeptide. J Biol Chem. 2000;275(30):23161–23168. doi: 10.1074/jbc.m001448200
  9. Chew SC, Sandanaraj E, Singh O, et al. Influence of SLCO1B3 haplotype-tag SNPs on docetaxel disposition in Chinese nasopharyngeal cancer patients. Br J Clin Pharmacol. 2012;73(4):606–618. doi: 10.1111/j.1365-2125.2011.04123.x EDN: CHCUGK
  10. Nakanishi T, Tamai I. Genetic polymorphisms of OATP transporters and their impact on intestinal absorption and hepatic disposition of drugs. Drug Metab Pharmacokinet. 2012;27(1):106–121. doi: 10.2133/dmpk.dmpk-11-rv-099
  11. Letschert K, Keppler D, König J. Mutations in the SLCO1B3 gene affecting the substrate specificity of the hepatocellular uptake transporter OATP1B3 (OATP8). Pharmacogenetics. 2004;14(7):441–452. doi: 10.1097/01.fpc.0000114744.08559.92
  12. Miura M, Satoh S, Inoue K, et al. Influence of SLCO1B1, 1B3, 2B1 and ABCC2 genetic polymorphisms on mycophenolic acid pharmacokinetics in Japanese renal transplant recipients. Eur J Clin Pharmacol. 2007; 63(12):1161–1169. doi: 10.1007/s00228-007-0380-7 EDN: PEXQJL
  13. Picard N, Yee SW, Woillard J-B, et al. The role of organic anion-transporting polypeptides and their common genetic variants in mycophenolic acid pharmacokinetics. Clin Pharmacol Ther. 2010;87(1):100–108. doi: 10.1038/clpt.2009.205
  14. Tsujimoto M, Dan Y, Hirata S, et al. Influence of SLCO1B3 gene polymorphism on the pharmacokinetics of digoxin in terminal renal failure. Drug Metab Pharmacokinet. 2008;23(6):406–411. doi: 10.2133/dmpk.23.406
  15. Hagenbuch B, Gui C. Xenobiotic transporters of the human organic anion transporting polypeptides (OATP) family. Xenobiotica. 2008;38(7-8): 778–801. doi: 10.1080/00498250801986951
  16. Liang T, Wang X, Zhang Y, et al. Human organic anion transporting polypeptide 1B3 (OATP1B3) is more heavily N-glycosylated than OATP1B1 in extracellular loops 2 and 5. Int J Biol Macromol. 2024;278(Pt 2):134748. doi: 10.1016/j.ijbiomac.2024.134748 EDN: OOZXAE
  17. Ciută A-D, Nosol K, Kowal J, et al. Structure of human drug transporters OATP1B1 and OATP1B3. Nat Commun. 2023;14(1):5774. doi: 10.1038/s41467-023-41552-8 EDN: RPEAGN
  18. Henderson RK, Fendler K, Poolman B. Coupling efficiency of secondary active transporters. Curr Opin Biotechnol. 2019;58:62–71. doi: 10.1016/j.copbio.2018.11.005
  19. Shitara Y. Clinical importance of OATP1B1 and OATP1B3 in drug-drug interactions. Drug Metab Pharmacokinet. 2011;26(3):220–227. doi: 10.2133/dmpk.dmpk-10-rv-094
  20. Gui C, Miao Y, Thompson L, et al. Effect of pregnane X receptor ligands on transport mediated by human OATP1B1 and OATP1B3. Eur J Pharmacol. 2008;584(1):57–65. doi: 10.1016/j.ejphar.2008.01.042
  21. Alam K, Farasyn T, Crowe A, et al. Treatment with proteasome inhibitor bortezomib decreases organic anion transporting polypeptide (OATP) 1B3-mediated transport in a substrate-dependent manner. PLoS One. 2017;12(11):e0186924. doi: 10.1371/journal.pone.0186924
  22. Vavricka SR, Van Montfoort J, Ha HR, et al. Interactions of rifamycin SV and rifampicin with organic anion uptake systems of human liver. Hepatology. 2002;36(1):164–172. doi: 10.1053/jhep.2002.34133
  23. Seithel A, Eberl S, Singer K, et al. The influence of macrolide antibiotics on the uptake of organic anions and drugs mediated by OATP1B1 and OATP1B3. Drug Metab Dispos. 2007;35(5):779–786. doi: 10.1124/dmd.106.014407
  24. Farasyn T, Pahwa S, Xu C, Yue W. Pre-incubation with OATP1B1 and OATP1B3 inhibitors potentiates inhibitory effects in physiologically relevant sandwich-cultured primary human hepatocytes. Eur J Pharm Sci. 2021;165:105951. doi: 10.1016/j.ejps.2021.105951 EDN: CBRTGV
  25. Murray M, Zhou F. Trafficking and other regulatory mechanisms for organic anion transporting polypeptides and organic anion transporters that modulate cellular drug and xenobiotic influx and that are dysregulated in disease. Br J Pharmacol. 2017;174(13):1908–1924. doi: 10.1111/bph.13785
  26. Opat AS, Houghton F, Gleeson PA. Steady-state localization of a medial-Golgi glycosyltransferase involves transit through the trans-Golgi network. Biochem J. 2001;358(Pt 1):33–40. doi: 10.1042/0264-6021:3580033
  27. Clarke JD, Novak P, Lake AD, et al. Impaired N-linked glycosylation of uptake and efflux transporters in human non-alcoholic fatty liver disease. Liver Int. 2017;37(7):1074–1081. doi: 10.1111/liv.13362
  28. Thomson MMS, Hines RN, Schuetz EG, Meibohm B. Expression Patterns of Organic Anion Transporting Polypeptides 1B1 and 1B3 Protein in Human Pediatric Liver. Drug Metab Dispos. 2016;44(7):999–1004. doi: 10.1124/dmd.115.069252
  29. Schwarz UI, Meyer zu Schwabedissen HE, Tirona RG, et al. Identification of novel functional organic anion-transporting polypeptide 1B3 polymorphisms and assessment of substrate specificity. Pharmacogenet Genomics. 2011;21(3):103–114. doi: 10.1097/fpc.0b013e328342f5b1 EDN: OAPXCZ
  30. Bian Y, Song X, Cheng K, et al. An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics. 2014; 96:253–262. doi: 10.1016/j.jprot.2013.11.014
  31. Powell J, Farasyn T, Köck K, et al. Novel mechanism of impaired function of organic anion-transporting polypeptide 1B3 in human hepatocytes: post-translational regulation of OATP1B3 by protein kinase C activation. Drug Metab Dispos. 2014;42(11):1964–1970. doi: 10.1124/dmd.114.056945
  32. Jung D, Hagenbuch B, Gresh L, et al. Characterization of the human OATP-C (SLC21A6) gene promoter and regulation of liver-specific OATP genes by hepatocyte nuclear factor 1 alpha. J Biol Chem. 2001;276(40): 37206–37214. doi: 10.1074/jbc.m103988200
  33. Vavricka SR, Jung D, Fried M, et al. The human organic anion transporting polypeptide 8 (SLCO1B3) gene is transcriptionally repressed by hepatocyte nuclear factor 3beta in hepatocellular carcinoma. J Hepatol. 2004;40(2):212–218. doi: 10.1016/j.jhep.2003.10.008
  34. Jigorel E, Le Vee M, Boursier–Neyret C, et al. Differential regulation of sinusoidal and canalicular hepatic drug transporter expression by xenobiotics activating drug-sensing receptors in primary human hepatocytes. Drug Metab Dispos. 2006;34(10):1756–1763. doi: 10.1124/dmd.106.010033
  35. Ichihara S, Kikuchi Y, Kusuhara H, et al. DNA methylation profiles of organic anion transporting polypeptide 1B3 in cancer cell lines. Pharm Res. 2010;27(3):510–516. doi: 10.1007/s11095-010-0064-3 EDN: NYQPAL
  36. Erokhina PD, Myl’nikov PYu, Ganina SO, et al. Development and Validation of the Quantitative Determination of Atorvastatin in HepG2 Cell Line Using High-Performance Liquid Chromatography with Mass-Spectrometric Detection. I.P. Pavlov Russian Medical Biological Herald. 2022;30(2):149–158. doi: 10.17816/PAVLOVJ100986 EDN: FFDFLP
  37. Park SH, Kim H, Kim EK, et al. Aberrant expression of OATP1B3 in colorectal cancer liver metastases and its clinical implication on gadoxetic acid-enhanced MRI. Oncotarget. 2017;8(41):71012–71023. doi: 10.18632/oncotarget.20295
  38. Ueno A, Masugi Y, Yamazaki K, et al. OATP1B3 expression is strongly associated with Wnt/β-catenin signalling and represents the transporter of gadoxetic acid in hepatocellular carcinoma. J Hepatol. 2014;61(5):1080–1087. doi: 10.1016/j.jhep.2014.06.008
  39. Evdokimova OV, Zhadnov VA, Elmi O, Burshinov AO. Psychological and Behavioral Features of Patients with Pharmacoresistant Epilepsy. Science of the Young (Eruditio Juvenium). 2022;10(4):381–390. doi: 10.23888/HMJ2022104381-390 EDN: TJJJCW

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).