Pathogenetic markers of cellular senescence

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

INTRODUCTION: Cellular senescence is a complex process occurring at all stages of the development and functioning of an organism. On the one hand, it is important as a mechanism protecting against cell damage, but on the other hand, it contributes to the development of age-related diseases and aging of an organism as a whole.

AIM: To determine key markers of senescent cells to study pathogenetic mechanisms of aging and to search for new strategies of healthy longevity.

A literature search was conducted in PubMed and eLibrary.ru databases until July 1, 2024 and included analysis of the original and review articles using the keywords: ‘senescent cells’, ‘cellular senescence’, ‘senescent cell markers’, ‘SA-β-Gal’, ‘SASP’. The best studied and widely used markers of senescent cells are cell cycle arrest factors: DNA damage response markers p53 and γH2AX, and cyclin-dependent kinase inhibitors p16 and p21. Furthermore, SA-β-Gal is a universal marker of cellular senescence, identified in both tissues and cell models of aging. SASP factors are not direct markers of aging, but an important indicator of complex interactions between senescent cells and their microenvironment.

CONCLUSION: Currently, a large number of senescent cells pathogenetic markers have been identified. Their expression can vary depending on the cell type and aging context, which is important to understand for the development of senolytic therapeutic approaches and the maintenance of healthy longevity.

About the authors

Yuliya V. Markina

Petrovsky National Research Center of Surgery; Petrovsky Medical University

Author for correspondence.
Email: yu.v.markina@gmail.com
ORCID iD: 0000-0002-3781-6340
SPIN-code: 8389-2346

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow; Moscow

Tatiana V. Kirichenko

Petrovsky National Research Center of Surgery; Petrovsky Medical University

Email: t-gorchakova@mail.ru
ORCID iD: 0000-0002-2899-9202
SPIN-code: 4332-9045

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow; Moscow

Ivan V. Zhivodernikov

Petrovsky National Research Center of Surgery

Email: kordait-2213@yandex.ru
ORCID iD: 0000-0002-2175-4739
SPIN-code: 1052-5249

Cand. Sci. (Biology)

Russian Federation, Moscow

Alexander M. Markin

Petrovsky National Research Center of Surgery; Petrovsky Medical University

Email: alexander.markin.34@gmail.com
ORCID iD: 0000-0002-6649-7924
SPIN-code: 8364-5150

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow; Moscow

Ilya I. Eremin

Petrovsky National Research Center of Surgery; Petrovsky Medical University

Email: eremin.ii@med.ru
ORCID iD: 0000-0002-4336-8986
SPIN-code: 6098-7226

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow; Moscow

Roman V. Deev

Petrovsky National Research Center of Surgery; Petrovsky Medical University

Email: romdey@gmail.com
ORCID iD: 0000-0001-8389-3841
SPIN-code: 2957-1687

MD, Cand. Sci. (Medicine), Assistant Professor

Russian Federation, Moscow; Moscow

Konstantin V. Kotenko

Petrovsky National Research Center of Surgery; Petrovsky Medical University

Email: noc@med.ru
ORCID iD: 0000-0002-6147-5574
SPIN-code: 5993-3323

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow; Moscow

References

  1. Saito Y, Yamamoto S, Chikenji TS. Role of cellular senescence in inflammation and regeneration. Inflamm Regen. 2024;44(1):28. doi: 10.1186/s41232-024-00342-5 EDN: GCBUPT
  2. Giannoula Y, Kroemer G, Pietrocola F. Cellular senescence and the host immune system in aging and age-related disorders. Biomed J. 2023;46(3):100581. doi: 10.1016/j.bj.2023.02.001 EDN: KWEVSA
  3. Salvioli S, Basile MS, Bencivenga L, et al. Biomarkers of aging in frailty and age-associated disorders: state of the art and future perspective. Ageing Res Rev. 2023;91:102044. doi: 10.1016/j.arr.2023.102044 EDN: UHOVAT
  4. Lelarge V, Capelle R, Oger F, et al. Senolytics: from pharmacological inhibitors to immunotherapies, a promising future for patients’ treatment. NPJ Aging. 2024;10(1):12. doi: 10.1038/s41514-024-00138-4 EDN: RASURO
  5. Gorgoulis V, Adams PD, Alimonti A, et al. Cellular Senescence: Defining a Path Forward. Cell. 2019;179(4):813–827. doi: 10.1016/j.cell.2019.10.005 EDN: PGJUED
  6. Huang R-X, Zhou P-K. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct Target Ther. 2020;5(1):60. doi: 10.1038/s41392-020-0150-x EDN: MYMACS
  7. Zhao K, Wang X, Xue X, et al. A long noncoding RNA sensitizes genotoxic treatment by attenuating ATM activation and homologous recombination repair in cancers. PLoS Biol. 2020;18(3):e3000666. doi: 10.1371/journal.pbio.3000666 EDN: VAHJAJ
  8. Gagou ME, Zuazua-Villar P, Meuth M. Enhanced H2AX phosphorylation, DNA replication fork arrest, and cell death in the absence of Chk1. Mol Biol Cell. 2010;21(5):739–752. doi: 10.1091/mbc.e09-07-0618 EDN: NYXINX
  9. Bártová E, Legartová S, Dundr M, Suchánková J. A role of the 53BP1 protein in genome protection: structural and functional characteristics of 53BP1-dependent DNA repair. Aging (Albany NY). 2019;11(8):2488–2511. doi: 10.18632/aging.101917 EDN: ACABBC
  10. Mirza-Aghazadeh-Attari M, Mohammadzadeh A, Yousefi B, et al. 53BP1: A key player of DNA damage response with critical functions in cancer. DNA Repair (Amst). 2019;73:110–119. doi: 10.1016/j.dnarep.2018.11.008 EDN: OFCNPT
  11. Vizioli MG, Liu T, Miller KN, et al. Mitochondria-to-nucleus retrograde signaling drives formation of cytoplasmic chromatin and inflammation in senescence. Genes Dev. 2020;34(5–6):428–445. doi: 10.1101/gad.331272.119 EDN: CZXMCG
  12. Dou Z, Ghosh K, Vizioli MG, et al. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature. 2017;550(7676):402–406. doi: 10.1038/nature24050
  13. Sun D, Buttitta L. States of G0 and the proliferation-quiescence decision in cells, tissues and during development. Int J Dev Biol. 2017; 61(6–7):357–366. doi: 10.1387/ijdb.160343lb
  14. Gao H, Nepovimova E, Heger Z, et al. Role of hypoxia in cellular senescence. Pharmacol Res. 2023;194:106841. doi: 10.1016/j.phrs.2023.106841 EDN: QZEQGF
  15. Itahana K, Campisi J, Dimri GP. Mechanisms of cellular senescence in human and mouse cells. Biogerontology. 2004;5(1):1–10. doi: 10.1023/b:bgen.0000017682.96395.10 EDN: FMDIDL
  16. Manu KA, Cao PHA, Chai TF, et al. P21cip1/Waf1 Coordinate Autophagy, Proliferation and Apoptosis in Response to Metabolic Stress. Cancers (Basel). 2019;11(8):1112. doi: 10.3390/cancers11081112 EDN: KRHGMX
  17. Huang W, Hickson LTJ, Eirin A, et al. Cellular senescence: the good, the bad and the unknown. Nat Rev Nephrol. 2022;18(10):611–627. doi: 10.1038/s41581-022-00601-z EDN: FLPMUY
  18. Kobashigawa SM, Sakaguchi Y, Masunaga S, Mori E. Stress-induced Cellular Senescence Contributes to Chronic Inflammation and Cancer Progression. Thermal Med. 2019;35(4):41–58. doi: 10.3191/thermalmed.35.41
  19. Kumari R, Jat P. Mechanisms of Cellular Senescence: Cell Cycle Arrest and Senescence Associated Secretory Phenotype. Front Cell Dev Biol. 2021;9:645593. doi: 10.3389/fcell.2021.645593 EDN: OTSQHR
  20. Bartle L, Wellinger RJ. Methods that shaped telomerase research. Biogerontology. 2024;25(2):249–263. doi: 10.1007/s10522-023-10073-8 EDN: XWABNK
  21. Saretzki G. Telomeres, Telomerase and Ageing. Subcell Biochem. 2018;90:221–308. doi: 10.1007/978-981-13-2835-0_9 EDN: IXZTLY
  22. Jaskelioff M, Muller FL, Paik J-H, et al. Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature. 2011;469(7328):102–106. doi: 10.1038/nature09603
  23. Dratwa M, Wysoczańska B, Łacina P, et al. TERT — Regulation and Roles in Cancer Formation. Front Immunol. 2020;11:589929. doi: 10.3389/fimmu.2020.589929 EDN: JVGOYC
  24. Itahana K, Campisi J, Dimri GP. Methods to detect biomarkers of cellular senescence: the senescence-associated beta-galactosidase assay. Methods Mol Biol. 2007;371:21–31. doi: 10.1007/978-1-59745-361-5_3
  25. Dimri GP, Lee X, Basile G, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA. 1995;92(20):9363–9367. doi: 10.1073/pnas.92.20.9363
  26. Maruyama N, Fukunaga I, Kogo T, et al. Accumulation of senescent cells in the stroma of aged mouse ovary. J Reprod Dev. 2023;69(6):328–336. doi: 10.1262/jrd.2023-021 EDN: PDWSTC
  27. Wang L, Han X, Qu G, et al. A pH probe inhibits senescence in mesenchymal stem cells. Stem Cell Res Ther. 2018;9(1):343. doi: 10.1186/s13287-018-1081-0 EDN: PNUVRU
  28. Cho S, Hwang ES. Status of mTOR activity may phenotypically differentiate senescence and quiescence. Mol Cells. 2012;33(6):597–604. doi: 10.1007/s10059-012-0042-1 EDN: RJYPPT
  29. Piechota M, Sunderland P, Wysocka A, et al. Is senescence-associated β-galactosidase a marker of neuronal senescence? Oncotarget. 2016; 7(49):81099–81109. doi: 10.18632/oncotarget.12752
  30. Basisty N, Kale A, Jeon OH, et al. A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLoS Biol. 2020;18(1):e3000599. doi: 10.1371/journal.pbio.3000599 EDN: VYHWPC
  31. Patschan S, Chen J, Gealekman O, et al. Mapping mechanisms and charting the time course of premature cell senescence and apoptosis: lysosomal dysfunction and ganglioside accumulation in endothelial cells. Am J Physiol Renal Physiol. 2008;294(1):F100–F109. doi: 10.1152/ajprenal.00261.2007
  32. Herman M, Randall GW, Spiegel JL, et al. Endo-lysosomal dysfunction in neurodegenerative diseases: opinion on current progress and future direction in the use of exosomes as biomarkers. Philos Trans R Soc Lond B Biol Sci. 2024;379(1899):20220387. doi: 10.1098/rstb.2022.0387 EDN: BXJQGD
  33. Kakimoto Y, Okada C, Kawabe N, et al. Myocardial lipofuscin accumulation in ageing and sudden cardiac death. Sci Rep. 2019;9(1): 3304. doi: 10.1038/s41598-019-40250-0 EDN: HMPZEA
  34. Li W-W, Wang H-J, Tan Y-Z, et al. Reducing lipofuscin accumulation and cardiomyocytic senescence of aging heart by enhancing autophagy. Exp Cell Res. 2021;403(1):112585. doi: 10.1016/j.yexcr.2021.112585 EDN: NNLEBE
  35. Song SB, Shim W, Hwang ES. Lipofuscin Granule Accumulation Requires Autophagy Activation. Mol Cells. 2023;46(8):486–495. doi: 10.14348/molcells.2023.0019 EDN: JDVYAG
  36. Jin X, Song X. Autophagy Dysfunction: The Kernel of Hair Loss? Clin Cosmet Investig Dermatol. 2024;17:1165–1181. doi: 10.2147/ccid.s462294 EDN: QVGCFR
  37. Kirchner P, Bourdenx M, Madrigal-Matute J, et al. Proteome-wide analysis of chaperone-mediated autophagy targeting motifs. PLoS Biol. 2019;17(5):e3000301. doi: 10.1371/journal.pbio.3000301 Erratum in: PLoS Biol. 2022;20(2):e3001550. doi: 10.1371/journal.pbio.3001550
  38. Kang C, Xu Q, Martin TD, et al. The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science. 2015;349(6255):aaa5612. doi: 10.1126/science.aaa5612
  39. Wang R, Yu Z, Sunchu B, et al. Rapamycin inhibits the secretory phenotype of senescent cells by a Nrf2-independent mechanism. Aging Cell. 2017;16(3):564–574. doi: 10.1111/acel.12587 EDN: YEEVVX
  40. Dellorusso PV, Proven MA, Calero–Nieto FJ, et al. Autophagy counters inflammation-driven glycolytic impairment in aging hematopoietic stem cells. Cell Stem Cell. 2024;31(7):1020–1037.e9. doi: 10.1016/j.stem.2024.04.020 EDN: FOQDMY
  41. Di Micco R, Krizhanovsky V, Baker D, d’Adda di Fagagna F. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat Rev Mol Cell Biol. 2021;22(2):75–95. doi: 10.1038/s41580-020-00314-w EDN: HMSHWJ
  42. Prata LGPL, Ovsyannikova IG, Tchkonia T, Kirkland JL. Senescent cell clearance by the immune system: Emerging therapeutic opportunities. Semin Immunol. 2018;40:101275. doi: 10.1016/j.smim.2019.04.003 EDN: JQDJQR
  43. Hou J, Zheng Y, Gao C. Regulation of cellular senescence by innate immunity. Biophys Rep. 2023;9(6):338–351. doi: 10.52601/bpr.2023.230032 EDN: JDFKDS
  44. Sturmlechner I, Zhang C, Sine CC, et al. p21 produces a bioactive secretome that places stressed cells under immunosurveillance. Science. 2021;374(6567):eabb3420. doi: 10.1126/science.abb3420 EDN: WCQDHW
  45. Han X, Lei Q, Xie J, et al. Potential Regulators of the Senescence-Associated Secretory Phenotype During Senescence and Aging. J Gerontol A Biol Sci Med Sci. 2022;77(11):2207–2218. doi: 10.1093/gerona/glac097 EDN: SZRTDA
  46. Cao X, Li M. A New Pathway for Senescence Regulation. Genomics Proteomics Bioinformatics. 2015;13(6):333–335. doi: 10.1016/j.gpb.2015.11.002
  47. Malaquin N, Olivier M-A, Martinez A, et al. Non-canonical ATM/MRN activities temporally define the senescence secretory program. EMBO Rep. 2020;21(10):e50718. doi: 10.15252/embr.202050718 EDN: LIQBCM
  48. Zhao S, Qiao Z, Pfeifer R, et al. Modulation of fracture healing by senescence-associated secretory phenotype (SASP): a narrative review of the current literature. Eur J Med Res. 2024;29(1):38. doi: 10.1186/s40001-023-01604-7 EDN: ALOBSC
  49. Shreeya T, Ansari MS, Kumar P, et al. Senescence: A DNA damage response and its role in aging and Neurodegenerative Diseases. Front Aging. 2023;4:1292053. doi: 10.3389/fragi.2023.1292053 EDN: NLWISO
  50. Chaib S, Tchkonia T, Kirkland JL. Cellular senescence and senolytics: the path to the clinic. Nat Med. 2022;28(8):1556–1568. doi: 10.1038/s41591-022-01923-y EDN: SKANUC
  51. Koloko Ngassie ML, Drake LY, Roos BB, et al. Endoplasmic reticulum stress-induced senescence in human lung fibroblasts. Am J Physiol Lung Cell Mol Physiol. 2024;327(1):L126–L139. doi: 10.1152/ajplung.00264.2023 EDN: DLJVLQ
  52. Yokoi H, Furukawa M, Wang J, et al. Erythritol Can Inhibit the Expression of Senescence Molecules in Mouse Gingival Tissues and Human Gingival Fibroblasts. Nutrients. 2023;15(18):4050. doi: 10.3390/nu15184050 Erratum in: Nutrients. 2024;16(17):3041. doi: 10.3390/nu16173041 EDN: VFSDCB
  53. Hong S, Kim M-M. IGFBP-3 plays an important role in senescence as an aging marker. Environ Toxicol Pharmacol. 2018;59:138–145. doi: 10.1016/j.etap.2018.03.014 EDN: VGKQNI
  54. López–Luppo M, Catita J, Ramos D, et al. Cellular Senescence Is Associated With Human Retinal Microaneurysm Formation During Aging. Invest Ophthalmol Vis Sci. 2017;58(7):2832–2842. doi: 10.1167/iovs.16-20312
  55. Sweetwyne MT, Pippin JW, Eng DG, et al. The mitochondrial-targeted peptide, SS-31, improves glomerular architecture in mice of advanced age. Kidney Int. 2017;91(5):1126–1145. doi: 10.1016/j.kint.2016.10.036
  56. Lavin KM, Perkins RK, Jemiolo B, et al. Effects of aging and lifelong aerobic exercise on basal and exercise-induced inflammation. J Appl Physiol (1985). 2020;128(1):87–99. doi: 10.1152/japplphysiol.00495.2019 EDN: FIUZPL

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07
 


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).