Pathogenetic markers of cellular senescence
- Authors: Markina Y.V.1,2, Kirichenko T.V.1,2, Zhivodernikov I.V.1, Markin A.M.1,2, Eremin I.I.1,2, Deev R.V.1,2, Kotenko K.V.1,2
-
Affiliations:
- Petrovsky National Research Center of Surgery
- Petrovsky Medical University
- Issue: Vol 33, No 4 (2025)
- Pages: 621-632
- Section: Reviews
- URL: https://journals.rcsi.science/pavlovj/article/view/373784
- DOI: https://doi.org/10.17816/PAVLOVJ634546
- EDN: https://elibrary.ru/JAAINY
- ID: 373784
Cite item
Abstract
INTRODUCTION: Cellular senescence is a complex process occurring at all stages of the development and functioning of an organism. On the one hand, it is important as a mechanism protecting against cell damage, but on the other hand, it contributes to the development of age-related diseases and aging of an organism as a whole.
AIM: To determine key markers of senescent cells to study pathogenetic mechanisms of aging and to search for new strategies of healthy longevity.
A literature search was conducted in PubMed and eLibrary.ru databases until July 1, 2024 and included analysis of the original and review articles using the keywords: ‘senescent cells’, ‘cellular senescence’, ‘senescent cell markers’, ‘SA-β-Gal’, ‘SASP’. The best studied and widely used markers of senescent cells are cell cycle arrest factors: DNA damage response markers p53 and γH2AX, and cyclin-dependent kinase inhibitors p16 and p21. Furthermore, SA-β-Gal is a universal marker of cellular senescence, identified in both tissues and cell models of aging. SASP factors are not direct markers of aging, but an important indicator of complex interactions between senescent cells and their microenvironment.
CONCLUSION: Currently, a large number of senescent cells pathogenetic markers have been identified. Their expression can vary depending on the cell type and aging context, which is important to understand for the development of senolytic therapeutic approaches and the maintenance of healthy longevity.
Keywords
About the authors
Yuliya V. Markina
Petrovsky National Research Center of Surgery; Petrovsky Medical University
Author for correspondence.
Email: yu.v.markina@gmail.com
ORCID iD: 0000-0002-3781-6340
SPIN-code: 8389-2346
MD, Cand. Sci. (Medicine)
Russian Federation, Moscow; MoscowTatiana V. Kirichenko
Petrovsky National Research Center of Surgery; Petrovsky Medical University
Email: t-gorchakova@mail.ru
ORCID iD: 0000-0002-2899-9202
SPIN-code: 4332-9045
MD, Cand. Sci. (Medicine)
Russian Federation, Moscow; MoscowIvan V. Zhivodernikov
Petrovsky National Research Center of Surgery
Email: kordait-2213@yandex.ru
ORCID iD: 0000-0002-2175-4739
SPIN-code: 1052-5249
Cand. Sci. (Biology)
Russian Federation, MoscowAlexander M. Markin
Petrovsky National Research Center of Surgery; Petrovsky Medical University
Email: alexander.markin.34@gmail.com
ORCID iD: 0000-0002-6649-7924
SPIN-code: 8364-5150
MD, Cand. Sci. (Medicine)
Russian Federation, Moscow; MoscowIlya I. Eremin
Petrovsky National Research Center of Surgery; Petrovsky Medical University
Email: eremin.ii@med.ru
ORCID iD: 0000-0002-4336-8986
SPIN-code: 6098-7226
MD, Cand. Sci. (Medicine)
Russian Federation, Moscow; MoscowRoman V. Deev
Petrovsky National Research Center of Surgery; Petrovsky Medical University
Email: romdey@gmail.com
ORCID iD: 0000-0001-8389-3841
SPIN-code: 2957-1687
MD, Cand. Sci. (Medicine), Assistant Professor
Russian Federation, Moscow; MoscowKonstantin V. Kotenko
Petrovsky National Research Center of Surgery; Petrovsky Medical University
Email: noc@med.ru
ORCID iD: 0000-0002-6147-5574
SPIN-code: 5993-3323
MD, Dr. Sci. (Medicine), Professor
Russian Federation, Moscow; MoscowReferences
- Saito Y, Yamamoto S, Chikenji TS. Role of cellular senescence in inflammation and regeneration. Inflamm Regen. 2024;44(1):28. doi: 10.1186/s41232-024-00342-5 EDN: GCBUPT
- Giannoula Y, Kroemer G, Pietrocola F. Cellular senescence and the host immune system in aging and age-related disorders. Biomed J. 2023;46(3):100581. doi: 10.1016/j.bj.2023.02.001 EDN: KWEVSA
- Salvioli S, Basile MS, Bencivenga L, et al. Biomarkers of aging in frailty and age-associated disorders: state of the art and future perspective. Ageing Res Rev. 2023;91:102044. doi: 10.1016/j.arr.2023.102044 EDN: UHOVAT
- Lelarge V, Capelle R, Oger F, et al. Senolytics: from pharmacological inhibitors to immunotherapies, a promising future for patients’ treatment. NPJ Aging. 2024;10(1):12. doi: 10.1038/s41514-024-00138-4 EDN: RASURO
- Gorgoulis V, Adams PD, Alimonti A, et al. Cellular Senescence: Defining a Path Forward. Cell. 2019;179(4):813–827. doi: 10.1016/j.cell.2019.10.005 EDN: PGJUED
- Huang R-X, Zhou P-K. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct Target Ther. 2020;5(1):60. doi: 10.1038/s41392-020-0150-x EDN: MYMACS
- Zhao K, Wang X, Xue X, et al. A long noncoding RNA sensitizes genotoxic treatment by attenuating ATM activation and homologous recombination repair in cancers. PLoS Biol. 2020;18(3):e3000666. doi: 10.1371/journal.pbio.3000666 EDN: VAHJAJ
- Gagou ME, Zuazua-Villar P, Meuth M. Enhanced H2AX phosphorylation, DNA replication fork arrest, and cell death in the absence of Chk1. Mol Biol Cell. 2010;21(5):739–752. doi: 10.1091/mbc.e09-07-0618 EDN: NYXINX
- Bártová E, Legartová S, Dundr M, Suchánková J. A role of the 53BP1 protein in genome protection: structural and functional characteristics of 53BP1-dependent DNA repair. Aging (Albany NY). 2019;11(8):2488–2511. doi: 10.18632/aging.101917 EDN: ACABBC
- Mirza-Aghazadeh-Attari M, Mohammadzadeh A, Yousefi B, et al. 53BP1: A key player of DNA damage response with critical functions in cancer. DNA Repair (Amst). 2019;73:110–119. doi: 10.1016/j.dnarep.2018.11.008 EDN: OFCNPT
- Vizioli MG, Liu T, Miller KN, et al. Mitochondria-to-nucleus retrograde signaling drives formation of cytoplasmic chromatin and inflammation in senescence. Genes Dev. 2020;34(5–6):428–445. doi: 10.1101/gad.331272.119 EDN: CZXMCG
- Dou Z, Ghosh K, Vizioli MG, et al. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature. 2017;550(7676):402–406. doi: 10.1038/nature24050
- Sun D, Buttitta L. States of G0 and the proliferation-quiescence decision in cells, tissues and during development. Int J Dev Biol. 2017; 61(6–7):357–366. doi: 10.1387/ijdb.160343lb
- Gao H, Nepovimova E, Heger Z, et al. Role of hypoxia in cellular senescence. Pharmacol Res. 2023;194:106841. doi: 10.1016/j.phrs.2023.106841 EDN: QZEQGF
- Itahana K, Campisi J, Dimri GP. Mechanisms of cellular senescence in human and mouse cells. Biogerontology. 2004;5(1):1–10. doi: 10.1023/b:bgen.0000017682.96395.10 EDN: FMDIDL
- Manu KA, Cao PHA, Chai TF, et al. P21cip1/Waf1 Coordinate Autophagy, Proliferation and Apoptosis in Response to Metabolic Stress. Cancers (Basel). 2019;11(8):1112. doi: 10.3390/cancers11081112 EDN: KRHGMX
- Huang W, Hickson LTJ, Eirin A, et al. Cellular senescence: the good, the bad and the unknown. Nat Rev Nephrol. 2022;18(10):611–627. doi: 10.1038/s41581-022-00601-z EDN: FLPMUY
- Kobashigawa SM, Sakaguchi Y, Masunaga S, Mori E. Stress-induced Cellular Senescence Contributes to Chronic Inflammation and Cancer Progression. Thermal Med. 2019;35(4):41–58. doi: 10.3191/thermalmed.35.41
- Kumari R, Jat P. Mechanisms of Cellular Senescence: Cell Cycle Arrest and Senescence Associated Secretory Phenotype. Front Cell Dev Biol. 2021;9:645593. doi: 10.3389/fcell.2021.645593 EDN: OTSQHR
- Bartle L, Wellinger RJ. Methods that shaped telomerase research. Biogerontology. 2024;25(2):249–263. doi: 10.1007/s10522-023-10073-8 EDN: XWABNK
- Saretzki G. Telomeres, Telomerase and Ageing. Subcell Biochem. 2018;90:221–308. doi: 10.1007/978-981-13-2835-0_9 EDN: IXZTLY
- Jaskelioff M, Muller FL, Paik J-H, et al. Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature. 2011;469(7328):102–106. doi: 10.1038/nature09603
- Dratwa M, Wysoczańska B, Łacina P, et al. TERT — Regulation and Roles in Cancer Formation. Front Immunol. 2020;11:589929. doi: 10.3389/fimmu.2020.589929 EDN: JVGOYC
- Itahana K, Campisi J, Dimri GP. Methods to detect biomarkers of cellular senescence: the senescence-associated beta-galactosidase assay. Methods Mol Biol. 2007;371:21–31. doi: 10.1007/978-1-59745-361-5_3
- Dimri GP, Lee X, Basile G, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA. 1995;92(20):9363–9367. doi: 10.1073/pnas.92.20.9363
- Maruyama N, Fukunaga I, Kogo T, et al. Accumulation of senescent cells in the stroma of aged mouse ovary. J Reprod Dev. 2023;69(6):328–336. doi: 10.1262/jrd.2023-021 EDN: PDWSTC
- Wang L, Han X, Qu G, et al. A pH probe inhibits senescence in mesenchymal stem cells. Stem Cell Res Ther. 2018;9(1):343. doi: 10.1186/s13287-018-1081-0 EDN: PNUVRU
- Cho S, Hwang ES. Status of mTOR activity may phenotypically differentiate senescence and quiescence. Mol Cells. 2012;33(6):597–604. doi: 10.1007/s10059-012-0042-1 EDN: RJYPPT
- Piechota M, Sunderland P, Wysocka A, et al. Is senescence-associated β-galactosidase a marker of neuronal senescence? Oncotarget. 2016; 7(49):81099–81109. doi: 10.18632/oncotarget.12752
- Basisty N, Kale A, Jeon OH, et al. A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLoS Biol. 2020;18(1):e3000599. doi: 10.1371/journal.pbio.3000599 EDN: VYHWPC
- Patschan S, Chen J, Gealekman O, et al. Mapping mechanisms and charting the time course of premature cell senescence and apoptosis: lysosomal dysfunction and ganglioside accumulation in endothelial cells. Am J Physiol Renal Physiol. 2008;294(1):F100–F109. doi: 10.1152/ajprenal.00261.2007
- Herman M, Randall GW, Spiegel JL, et al. Endo-lysosomal dysfunction in neurodegenerative diseases: opinion on current progress and future direction in the use of exosomes as biomarkers. Philos Trans R Soc Lond B Biol Sci. 2024;379(1899):20220387. doi: 10.1098/rstb.2022.0387 EDN: BXJQGD
- Kakimoto Y, Okada C, Kawabe N, et al. Myocardial lipofuscin accumulation in ageing and sudden cardiac death. Sci Rep. 2019;9(1): 3304. doi: 10.1038/s41598-019-40250-0 EDN: HMPZEA
- Li W-W, Wang H-J, Tan Y-Z, et al. Reducing lipofuscin accumulation and cardiomyocytic senescence of aging heart by enhancing autophagy. Exp Cell Res. 2021;403(1):112585. doi: 10.1016/j.yexcr.2021.112585 EDN: NNLEBE
- Song SB, Shim W, Hwang ES. Lipofuscin Granule Accumulation Requires Autophagy Activation. Mol Cells. 2023;46(8):486–495. doi: 10.14348/molcells.2023.0019 EDN: JDVYAG
- Jin X, Song X. Autophagy Dysfunction: The Kernel of Hair Loss? Clin Cosmet Investig Dermatol. 2024;17:1165–1181. doi: 10.2147/ccid.s462294 EDN: QVGCFR
- Kirchner P, Bourdenx M, Madrigal-Matute J, et al. Proteome-wide analysis of chaperone-mediated autophagy targeting motifs. PLoS Biol. 2019;17(5):e3000301. doi: 10.1371/journal.pbio.3000301 Erratum in: PLoS Biol. 2022;20(2):e3001550. doi: 10.1371/journal.pbio.3001550
- Kang C, Xu Q, Martin TD, et al. The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science. 2015;349(6255):aaa5612. doi: 10.1126/science.aaa5612
- Wang R, Yu Z, Sunchu B, et al. Rapamycin inhibits the secretory phenotype of senescent cells by a Nrf2-independent mechanism. Aging Cell. 2017;16(3):564–574. doi: 10.1111/acel.12587 EDN: YEEVVX
- Dellorusso PV, Proven MA, Calero–Nieto FJ, et al. Autophagy counters inflammation-driven glycolytic impairment in aging hematopoietic stem cells. Cell Stem Cell. 2024;31(7):1020–1037.e9. doi: 10.1016/j.stem.2024.04.020 EDN: FOQDMY
- Di Micco R, Krizhanovsky V, Baker D, d’Adda di Fagagna F. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat Rev Mol Cell Biol. 2021;22(2):75–95. doi: 10.1038/s41580-020-00314-w EDN: HMSHWJ
- Prata LGPL, Ovsyannikova IG, Tchkonia T, Kirkland JL. Senescent cell clearance by the immune system: Emerging therapeutic opportunities. Semin Immunol. 2018;40:101275. doi: 10.1016/j.smim.2019.04.003 EDN: JQDJQR
- Hou J, Zheng Y, Gao C. Regulation of cellular senescence by innate immunity. Biophys Rep. 2023;9(6):338–351. doi: 10.52601/bpr.2023.230032 EDN: JDFKDS
- Sturmlechner I, Zhang C, Sine CC, et al. p21 produces a bioactive secretome that places stressed cells under immunosurveillance. Science. 2021;374(6567):eabb3420. doi: 10.1126/science.abb3420 EDN: WCQDHW
- Han X, Lei Q, Xie J, et al. Potential Regulators of the Senescence-Associated Secretory Phenotype During Senescence and Aging. J Gerontol A Biol Sci Med Sci. 2022;77(11):2207–2218. doi: 10.1093/gerona/glac097 EDN: SZRTDA
- Cao X, Li M. A New Pathway for Senescence Regulation. Genomics Proteomics Bioinformatics. 2015;13(6):333–335. doi: 10.1016/j.gpb.2015.11.002
- Malaquin N, Olivier M-A, Martinez A, et al. Non-canonical ATM/MRN activities temporally define the senescence secretory program. EMBO Rep. 2020;21(10):e50718. doi: 10.15252/embr.202050718 EDN: LIQBCM
- Zhao S, Qiao Z, Pfeifer R, et al. Modulation of fracture healing by senescence-associated secretory phenotype (SASP): a narrative review of the current literature. Eur J Med Res. 2024;29(1):38. doi: 10.1186/s40001-023-01604-7 EDN: ALOBSC
- Shreeya T, Ansari MS, Kumar P, et al. Senescence: A DNA damage response and its role in aging and Neurodegenerative Diseases. Front Aging. 2023;4:1292053. doi: 10.3389/fragi.2023.1292053 EDN: NLWISO
- Chaib S, Tchkonia T, Kirkland JL. Cellular senescence and senolytics: the path to the clinic. Nat Med. 2022;28(8):1556–1568. doi: 10.1038/s41591-022-01923-y EDN: SKANUC
- Koloko Ngassie ML, Drake LY, Roos BB, et al. Endoplasmic reticulum stress-induced senescence in human lung fibroblasts. Am J Physiol Lung Cell Mol Physiol. 2024;327(1):L126–L139. doi: 10.1152/ajplung.00264.2023 EDN: DLJVLQ
- Yokoi H, Furukawa M, Wang J, et al. Erythritol Can Inhibit the Expression of Senescence Molecules in Mouse Gingival Tissues and Human Gingival Fibroblasts. Nutrients. 2023;15(18):4050. doi: 10.3390/nu15184050 Erratum in: Nutrients. 2024;16(17):3041. doi: 10.3390/nu16173041 EDN: VFSDCB
- Hong S, Kim M-M. IGFBP-3 plays an important role in senescence as an aging marker. Environ Toxicol Pharmacol. 2018;59:138–145. doi: 10.1016/j.etap.2018.03.014 EDN: VGKQNI
- López–Luppo M, Catita J, Ramos D, et al. Cellular Senescence Is Associated With Human Retinal Microaneurysm Formation During Aging. Invest Ophthalmol Vis Sci. 2017;58(7):2832–2842. doi: 10.1167/iovs.16-20312
- Sweetwyne MT, Pippin JW, Eng DG, et al. The mitochondrial-targeted peptide, SS-31, improves glomerular architecture in mice of advanced age. Kidney Int. 2017;91(5):1126–1145. doi: 10.1016/j.kint.2016.10.036
- Lavin KM, Perkins RK, Jemiolo B, et al. Effects of aging and lifelong aerobic exercise on basal and exercise-induced inflammation. J Appl Physiol (1985). 2020;128(1):87–99. doi: 10.1152/japplphysiol.00495.2019 EDN: FIUZPL
Supplementary files
