The role of mitochondria in the development of cardiovascular diseases

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

INTRODUCTION: A large amount of experimental and clinical data has been accumulated that evidence the involvement of cardiomyocyte mitochondria in the pathogenesis of heart failure, cardiomyopathies and ischemic-reperfusion myocardial injury. Morphological changes of cardiomyocyte mitochondria include hyperplasia, decreased organelle size and broken structural integrity. Overexpression of various microRNAs suppresses mRNA transcription and the activity of enzymes and proteins involved in β-oxidation of fatty acids, Krebs cycle functioning, ATP production. It also inhibits the expression of genes regulating adaptive and maladaptive cardiac remodeling in heart failure. All the above events are accompanied by decreased ATP synthesis, release of pro-apoptotic proteins, fibrosis and cardiac hypertrophy.

AIM: To analyze and systematize modern data on the role of mitochondrial dysfunction in the pathogenesis of cardiovascular diseases, and potential ways of its correction.

To find material for this review article, we used the abstracting databases PubMed, Google Scholar, and eLibrary. The search included publications from 2013 to 2023.

Analysis of literature sources showed that mitochondrial dysfunction has recently been considered an important factor in the development of heart failure. It also revealed the relationship between cardiomyopathies and mitochondrial failure as well as its role as a critical pathophysiological factor of myocardial destruction in ischemia/reperfusion. Additionally, data were obtained about an ambiguous role of microRNA-dependent regulation of the mitochondrial genes and their involvement in the development of cardiovascular diseases. Of importance is search for mitochondria-targeted medical drugs for the treatment of cardiovascular diseases. The promising drug targets are reactive oxygen species, factors controlling mitochondrial fission and fusion, biogenesis and autophagy, modulators of mitochondrial microRNA expression, and mitochondrial permeability pores.

CONCLUSION: Cardiovascular diseases induced by mitochondrial dysfunction, can be associated with different organelle damages. New technologies of investigating molecular mechanisms underlying mitochondrial dysfunction and precise understanding of these disorders open up opportunities to more clearly define pathophysiological aspects and develop new therapeutic approaches for the treatment of circulatory diseases.

About the authors

Hala Deeb

Al Hawash Private University

Email: hala197944@gmail.com
ORCID iD: 0009-0008-8878-0529

PhD (in Biology), Assistant Professor

Syrian Arab Republic, Homs

Valentina N. Perfilova

Volgograd State Medical University

Author for correspondence.
Email: vnperfilova@mail.ru
ORCID iD: 0000-0002-2457-8486
SPIN-code: 3291-9904

Dr. Sci. (Biology), Professor

Russian Federation, Volgograd

References

  1. Boengler K, Kosiol M, Mayr M, et al. Mitochondria and ageing: role in heart, skeletal muscle and adipose tissue. J Cachexia Sarcopenia Muscle. 2017;8(3):349–369. doi: 10.1002/jcsm.12178 EDN: YGWUAK
  2. Picca A, Lezza AMS, Leeuwenburgh C, et al. Fueling Inflamm-Aging through Mitochondrial Dysfunction: Mechanisms and Molecular Targets. Int J Mol Sci. 2017;18(5):933. doi: 10.3390/ijms18050933
  3. Whitley BN, Engelhart EA, Hoppins S. Mitochondrial dynamics and their potential as a therapeutic target. Mitochondrion. 2019;49:269–283. doi: 10.1016/j.mito.2019.06.002 EDN: OIKZDX
  4. Martin OJ, Lai L, Soundarapandian MM, et al. A role for peroxisome proliferator-activated receptor γ coactivator-1 in the control of mitochondrial dynamics during postnatal cardiac growth. Circ Res. 2014;114(4):626–636. doi: 10.1161/circresaha.114.302562
  5. Tang X, Chen X-F, Chen H-Z, Liu D-P. Mitochondrial Sirtuins in cardiometabolic diseases. Clin Sci (Lond). 2017;131(16):2063–2078. doi: 10.1042/cs20160685
  6. Duarte FV, Palmeira CM, Rolo AP. The Role of microRNAs in Mitochondria: Small Players Acting Wide. Genes (Basel). 2014;5(4):865–886. doi: 10.3390/genes5040865
  7. Dolinsky VW, Cole LK, Sparagna GC, Hatch GM. Cardiac mitochondrial energy metabolism in heart failure: Role of cardiolipin and sirtuins. Biochim Biophys Acta. 2016;1861(10):1544–1554. doi: 10.1016/j.bbalip.2016.03.008
  8. Hamilton S, Terentyeva R, Martin B, et al. Increased RyR2 activity is exacerbated by calcium leak-induced mitochondrial ROS. Basic Res Cardiol. 2020;115(4):38. doi: 10.1007/s00395-020-0797-z EDN: APYQPK
  9. Sheeran FL, Pepe S. Posttranslational modifications and dysfunction of mitochondrial enzymes in human heart failure. Am J Physiol Endocrinol Metab. 2016;311(2):E449–E460. doi: 10.1152/ajpendo.00127.2016 EDN: SEYEEX
  10. Gomes KMS, Campos JC, Bechara LRG, et al. Aldehyde dehydrogenase 2 activation in heart failure restores mitochondrial function and improves ventricular function and remodeling. Cardiovasc Res. 2014;103(4): 498–508. doi: 10.1093/cvr/cvu125
  11. Bradley JM, Li Z, Organ CL, et al. A novel mtDNA repair fusion protein attenuates maladaptive remodeling and preserves cardiac function in heart failure. Am J Physiol Heart Circ Physiol. 2017;314(2):H311–H321. doi: 10.1152/ajpheart.00515.2017
  12. Zhang Y, Guallar E, Ashar FN, et al. Association between mitochondrial DNA copy number and sudden cardiac death: findings from the Atherosclerosis Risk in Communities study (ARIC). Eur Heart J. 2017; 38(46):3443–3448. doi: 10.1093/eurheartj/ehx354 EDN: XZEAPA
  13. Bhat S, Chin A, Shirakabe A, et al. Recruitment of RNA Polymerase II to Metabolic Gene Promoters Is Inhibited in the Failing Heart Possibly Through PGC-1α (Peroxisome Proliferator-Activated Receptor-γ Coactivator-1α) Dysregulation. Circ Heart Fail. 2019;12(3):e005529. doi: 10.1161/circheartfailure.118.005529
  14. Hulsurkar MM, Lahiri SK, Karch J, et al. Targeting calcium-mediated inter-organellar crosstalk in cardiac diseases. Expert Opin Ther Targets. 2022;26(4):303–317. doi: 10.1080/14728222.2022.2067479 EDN: LREMAC
  15. Wang S, Li Y, Xu Y, et al. AAV Gene Therapy Prevents and Reverses Heart Failure in A Murine Knockout Model of Barth Syndrome. Circ Res. 2020;126(8):1024–1039. doi: 10.1161/circresaha.119.315956 EDN: VQXRFM
  16. Cheung KG, Cole LK, Xiang B, et al. Sirtuin-3 (SIRT3) Protein Attenuates Doxorubicin-induced Oxidative Stress and Improves Mitochondrial Respiration in H9c2 Cardiomyocytes. J Biol Chem. 2015;290(17):10981–10993. doi: 10.1074/jbc.m114.607960
  17. Leontyeva IV, Nikolaeva EA, Kalachanova EP. Heart injury in Barth syndrome. Russian Bulletin of Perinatology and Pediatrics. 2016;61(1):64–70. doi: 10.21508/1027-4065-2016-61-1-64-70 EDN: VNXZGL
  18. Ahola S, Rivera Mejías P, Hermans S, et al. OMA1-mediated integrated stress response protects against ferroptosis in mitochondrial cardiomyopathy. Cell Metab. 2022;34(11):1875–1891.e7. doi: 10.1016/j.cmet.2022.08.017 EDN: BQVCBY
  19. Tsushima K, Bugger H, Wende AR, et al. Mitochondrial Reactive Oxygen Species in Lipotoxic Hearts Induce Post-Translational Modifications of AKAP121, DRP1, and OPA1 That Promote Mitochondrial Fission. Circ Res. 2018;122(1):58–73. doi: 10.1161/circresaha.117.311307
  20. Chen Y, Dorn GW 2nd. PINK1-Phosphorylated Mitofusin 2 Is a Parkin Receptor for Culling Damaged Mitochondria. Science. 2013;340(6131): 471–475. doi: 10.1126/science.1231031
  21. Muranova AV, Strokov IA. Mitochondrial cytopathies: MELAS and MIDD syndromes. One genetic defect — different clinical appearances. Neurological Journal. 2017;22(1):19–24. EDN: YNADIB
  22. Mamou Z, Chahine M, Rhondali O, et al. Effects of amlodipine and perindoprilate on the structure and function of mitochondria in ventricular cardiomyocytes during ischemia-reperfusion in the pig. Fundam Clin Pharmacol. 2015;29(1):21–30. doi: 10.1111/fcp.12070
  23. Fazal L, Laudette M, Paula-Gomes S, et al. Multifunctional Mitochondrial Epac1 Controls Myocardial Cell Death. Circ Res. 2017;120(4):645–657. doi: 10.1161/circresaha.116.309859
  24. Ramachandra CJA, Hernandez-Resendiz S, Crespo-Avilan GE, et al. Mitochondria in acute myocardial infarction and cardioprotection. EBioMedicine. 2020;57:102884. doi: 10.1016/j.ebiom.2020.102884 EDN: QHUQOK
  25. Yang F, Li T, Dong Z, Mi R. MicroRNA-410 is involved in mitophagy after cardiac ischemia/reperfusion injury by targeting high-mobility group box 1 protein. J Cell Biochem. 2017;119(2):2427–2439. doi: 10.1002/jcb.26405
  26. Bauer TM, Murphy E. Role of Mitochondrial Calcium and the Permeability Transition Pore in Regulating Cell Death. Circ Res. 2020;126(2):280–293. doi: 10.1161/circresaha.119.316306 EDN: ZQDMOS
  27. Hausenloy DJ, Yellon DM. Myocardial ischemia-reperfusion injury: a neglected therapeutic target. J Clin Invest. 2013;123(14):92–100. doi: 10.1172/jci62874
  28. Lorenzen JM, Batkai S, Thum T. Regulation of cardiac and renal ischemia-reperfusion injury by microRNAs. Free Radic Biol Med. 2013; 64:78–84. doi: 10.1016/j.freeradbiomed.2013.06.044
  29. Sharp WW, Beiser DG, Fang YH, et al. Inhibition of the mitochondrial fission protein dynamin-related protein 1 improves survival in a murine cardiac arrest model. Crit Care Med. 2015;43(2):e38–e47. doi: 10.1097/ccm.0000000000000817
  30. Pinti MV, Hathaway QA, Hollander JM. Role of microRNA in metabolic shift during heart failure. Am J Physiol Heart Circ Physiol. 2017;312(1): H33–H45. doi: 10.1152/ajpheart.00341.2016
  31. Zhao Y, Ponnusamy M, Liu C, et al. MiR-485-5p modulates mitochondrial fission through targeting mitochondrial anchored protein ligase in cardiac hypertrophy. Biochim Biophys Acta Mol Basis Dis. 2017;1863(11):2871–2881. doi: 10.1016/j.bbadis.2017.07.034
  32. Gorący A, Rosik J, Szostak J, et al. Improving mitochondrial function in preclinical models of heart failure: therapeutic targets for future clinical therapies? Expert Opin Ther Targets. 2023;27(7):593–608. doi: 10.1080/14728222.2023.2240021 EDN: KXYVQH
  33. Ribeiro Junior RF, Dabkowski ER, Shekar KC, et al. MitoQ improves mitochondrial dysfunction in heart failure induced by pressure overload. Free Radic Biol Med. 2018;117:18–29. doi: 10.1016/j.freeradbiomed.2018.01.012 EDN: YFKHMT
  34. Ghaffari S, Kazemi B, Toluey M, Sepehrvand N. The effect of prethrombolytic cyclosporine-A injection on clinical outcome of acute anterior ST-elevation myocardial infarction. Cardiovasc Ther. 2013;31(4): e34–e39. doi: 10.1111/1755-5922.12010
  35. Kwong JQ, Davis J, Baines CP, et al. Genetic deletion of the mitochondrial phosphate carrier desensitizes the mitochondrial permeability transition pore and causes cardiomyopathy. Cell Death Differ. 2014;21(8):1209–1217. doi: 10.1038/cdd.2014.36
  36. Gharanei M, Hussain A, Janneh O, Maddock H. Attenuation of Doxorubicin-Induced Cardiotoxicity by mdivi-1: A Mitochondrial Division/Mitophagy Inhibitor. PLoS One. 2013;8(10):e77713. doi: 10.1371/journal.pone.0077713 EDN: SQHEJZ
  37. Li Y, Chen C, Yao F, et al. AMPK inhibits cardiac hypertrophy by promoting autophagy via mTORC1. Arch Biochem Biophys. 2014;558:79–86. doi: 10.1016/j.abb.2014.06.023
  38. Orogo AM, Gustafsson ÅB. Therapeutic targeting of autophagy: potential and concerns in treating cardiovascular disease. Circ Res. 2015;116(3): 489–503. doi: 10.1161/circresaha.116.303791 EDN: UOQFGD
  39. Daubert MA, Yow E, Dunn G, et al. Novel Mitochondria-Targeting Peptide in Heart Failure Treatment: A Randomized, Placebo-Controlled Trial of Elamipretide. Circ Heart Fail. 2017;10(12):e004389. doi: 10.1161/circheartfailure.117.004389
  40. Disatnik M-H, Ferreira JCB, Campos JC, et al. Acute inhibition of excessive mitochondrial fission after myocardial infarction prevents long-term cardiac dysfunction. J Am Heart Assoc. 2013;2(5):e000461. doi: 10.1161/jaha.113.000461
  41. Xu H, Cao H, Zhu G, et al. Overexpression of microRNA-145 protects against rat myocardial infarction through targeting PDCD4. Am J Transl Res. 2017;9(11):5003–5011.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07
 


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).