Гипергомоцистеинемия и особенности распределения аллельного полиморфизма генов фолатной группы у больных со злокачественными новообразованиями
- Авторы: Петриков А.С.1, Белых В.И.2, Павлова А.Д.2
-
Учреждения:
- Ростовский государственный медицинский университет
- Алтайский государственный медицинский университет
- Выпуск: Том 33, № 3 (2025)
- Страницы: 447-456
- Раздел: Научные обзоры
- URL: https://journals.rcsi.science/pavlovj/article/view/327205
- DOI: https://doi.org/10.17816/PAVLOVJ643264
- EDN: https://elibrary.ru/MAFMCI
- ID: 327205
Цитировать
Аннотация
Введение. Злокачественные новообразования (ЗНО) в настоящее время широко распространены в популяции. Изучение этиологии различных опухолевых заболеваний является важным звеном в медицинской науке. В последние годы было показано, что повышенный уровень гомоцистеина (ГЦ) в крови тесно связан с раком, а также неблагоприятным течением после оперативных вмешательств и на фоне химиотерапии.
Цель. Оценить роль гипергомоцистеинемии (ГГЦ) и полиморфизма генов фолатного цикла в развитии опухолевых процессов и венозных тромбоэмболических осложнений (ВТЭО).
Материалы и методы. В базах данных PubMed и eLibrary.ru выполнен поиск публикаций за период с 1 января 2005 по 31 декабря 2024 года, включая тезисы и статьи с результатами оригинальных исследований (первичные источники), метаанализы и обзоры (вторичные источники), зарубежные и российские клинические рекомендации (третичные источники) по ключевым словам «злокачественные новообразования», «гипергомоцистеинемия», «полиморфизм генов фолатного цикла», «фолиевая кислота», «венозные тромбоэмболические осложнения». Проанализирована и оценена роль ГГЦ, полиморфизма генов фолатного цикла в развитии опухолевых процессов и венозных тромбозов.
Результаты. В этом обзоре анализируется взаимосвязь между повышенным уровнем ГЦ в плазме и риском развития ЗНО различной локализации и обсуждаются будущие клинические перспективы. Приводятся доказательства взаимодействия между аллельным полиморфизмом генов фолатного цикла, участвующих в метаболизме ГЦ, и риском развития и течения ЗНО у человека. Систематизируются сведения о роли ГГЦ в развитии венозных ВТЭО у пациентов со ЗНО.
Заключение. Содержание ГЦ в плазме крови можно использовать в качестве потенциального опухолевого биомаркера при различных видах ЗНО, а ГГЦ может являться важным прогностическим маркером течения опухолевых процессов и фактором риска развития ВТЭО. Понимание влияния уровня ГЦ на рост и пролиферацию опухолевых клеток позволит создать новые многообещающие стратегии борьбы с ЗНО. Для более точной оценки этих позиций необходимы дальнейшие клинические исследования.
Полный текст
Открыть статью на сайте журналаОб авторах
Алексей Сергеевич Петриков
Ростовский государственный медицинский университет
Автор, ответственный за переписку.
Email: petricov_alex@mail.ru
ORCID iD: 0000-0002-6501-3289
SPIN-код: 4612-6452
д-р мед. наук, доцент
Россия, Ростов-на-ДонуВладимир Иванович Белых
Алтайский государственный медицинский университет
Email: dr_bvi@mail.ru
ORCID iD: 0009-0004-0841-0028
SPIN-код: 4758-4688
д-р мед. наук, доцент
Россия, БарнаулАлександра Денисовна Павлова
Алтайский государственный медицинский университет
Email: pavlovaaleksandra2002@gmail.com
ORCID iD: 0009-0005-6475-4308
SPIN-код: 2927-1721
Россия, Барнаул
Список литературы
- Wu S, Powers S, Zhu W, Hannun YA. Substantial contribution of extrinsic risk factors to cancer development. Nature. 2016;529(7584):43–47. doi: 10.1038/nature16166
- Miroshnichenko II, Ptitsyna SN, Kuznetsova NN, Kalmykov YUM. Gomo-tsistein — prediktor patologicheskikh izmeneniy v organizme cheloveka. Russkiy Meditsinskiy Zhurnal. 2009;17(4):224–227. (In Russ.) EDN: PBMHJF
- Zobova DA, Kozlov SA. The role of homocysteine in pathogenesis of certain diseases. University Proceedings. Volga Region. Medical Sciences. 2016;(3):132–144. doi: 10.21685/2072-3032-2016-3-15 EDN: XBVMWZ
- Perła–Kaján J, Twardowski T, Jakubowski H. Mechanisms of homocysteine toxicity in humans. Amino Acids. 2007;32(4):561–572. doi: 10.1007/s00726-006-0432-9 EDN: JLXXLI
- Kostyuchenko GI, Barkagan ZS. Diagnostika i metody korrektsii giper-gomotsisteinemii v kardiologicheskoy praktike. Moscow; 2004. (In Russ.)
- Petrikov AS, Shoykhet YAN, Belykh VI. Otsenka riska trombozov ven nizhnikh konechnostey i tromboembolii legochnoy arterii na osnove analiza geneticheskikh faktorov. Barnaul: Izdatel'stvo Altayskogo gosudarstvennogo universiteta; 2015. (In Russ.) EDN: UJEGCX
- Pan D, Su M, Huang G, et al. MTHFR C677T genetic polymorphism in combination with serum vitamin B2, B12 and aberrant DNA methylation of P16 and P53 genes in esophageal squamous cell carcinoma and esophageal precancerous lesions: a case-control study. Cancer Cell Int. 2019;19(1):288. doi: 10.1186/s12935-019-1012-x EDN: XPKEAV
- Li W-X, Dai S-X, Zheng J-J, et al. Homocysteine Metabolism Gene Polymorphisms (MTHFR C677T, MTHFR A1298C, MTR A2756G and MTRR A66G) Jointly Elevate the Risk of Folate Deficiency. Nutrients. 2015;7(8):6670–6687. doi: 10.3390/nu7085303 EDN: VGFVLF
- Liu Y-X, Wang B, Wan M-H, et al. Meta-analysis of the relationship between the Metholenetetrahydrofolate reductase C677T genetic polymorphism, folate intake and esophageal cancer. Asian Pac J Cancer Prev. 2011;12(1):247–252.
- Swartz MD, Peterson CB, Lupo PJ, et al. Investigating multiple candidate genes and nutrients in the folate metabolism pathway to detect genetic and nutritional risk factors for lung cancer. PLoS One. 2013;8(1): e53475. doi: 10.1371/journal.pone.0053475
- Chang S-C, Chang P-Y, Butler B, et al. Single nucleotide polymorphisms of one-carbon metabolism and cancers of the esophagus, stomach, and liver in a Chinese population. PLoS One. 2014;9(10):e109235. doi: 10.1371/journal.pone.0109235
- Davydchyk EV, Snezhitskiy VA, Nikonova LV. Relationship of hyperhomocysteinemia with coronary heart disease and diabetes mellitus. Journal of the Grodno State Medical University. 2015;(1):9–13. EDN: TNBTAR
- Liu B, Chen Z, Dong X, Qin G. Association of prehypertension and hyperhomocysteinemia with subclinical atherosclerosis in asymptomatic Chinese: a cross-sectional study. BMJ Open. 2018;8(3): e019829. doi: 10.1136/bmjopen-2017-019829
- Refsum H, Nurk E, Smith AD, et al. The Hordaland Homocysteine Study: a community-based study of homocysteine, its determinants, and associations with disease. J Nutr. 2006;136(6 Suppl):1731S–1740S. doi: 10.1093/jn/136.6.1731s
- Shilova AN, Shkoda OS, Lomivorotov VV, Shilova JN. Association of the folate metabolism genes with the risk for lung, prostate, breast and uterine cancer. Russian Journal of Oncology. 2017;22(4):203–208. doi: 10.18821/1028-9984-2017-22-4-203-208 EDN: ZHFCYB
- Plazar N, Jurdana M. Hyperhomocysteinemia and the role of B vitamins in cancer. Radiol Oncol. 2010;44(2):79–85. doi: 10.2478/v10019-010-0022-z EDN: LSVZAY
- Zotova LA, Yakushin SS. Venous thromboembolic complications in cancer patients. Prevention and treatment of venous thromboembolism associated with oncological diseases. Modern Problems of Science and Education. 2022;(3):142. Available from: https://science-education.ru/article/view?id = 31687. Accessed: 20.12.2024. doi: 10.17513/spno.31687 EDN: FOIONH
- Sushinskaya TV, Stuklov NI, Dobrokhotova YuE. Hemostasis and cancer-associated thrombosis: modern prevention and treatment. P.A. Herzen Journal of Oncology. 2018;(4):64–72. doi: 10.17116/onkolog20187464 EDN: XWAXLV
- Stathopoulou A, Vlachonikolis I, Mavroudis D, et al. Molecular detection of cytokeratin-19-positive cells in the peripheral blood of patients with operable breast cancer: evaluation of their prognostic significance. J Clin Oncol. 2002;20(16):3404–3412. doi: 10.1200/jco.2002.08.135
- Hasan T, Arora R, Bansal AK, et l. Disturbed homocysteine metabolism is associated with cancer. Exp Mol Med. 2019;51(2):1–13. doi: 10.1038/s12276-019-0216-4
- Bakanova ML, Soboleva OA, Minina VI, et al. Association of polymorphism of folate metabolism genes and chromosomal aberrations in blood cells of lung cancer patients. Medical Genetics. 2017;16(3):12–19. EDN: YPIFOX
- Tastekin D, Erturk K, Bozbey HU, et al. Plasma homocysteine, folate and vitamin B12 levels in patients with lung cancer. Exp Oncol. 2015; 37(3):218–222.
- Qiang Y, Li Q, Xin Y, et al. Intake of Dietary One-Carbon Metabolism-Related B Vitamins and the Risk of Esophageal Cancer: A Dose-Response Meta-Analysis. Nutrients. 2018;10(7):835. doi: 10.3390/nu10070835 EDN: CXHESG
- Xu J, Zhao X, Sun S, et al. Homocysteine and Digestive Tract Cancer Risk: A Dose-Response Meta-Analysis. J Oncol. 2018;2018:3720684. doi: 10.1155/2018/3720684
- Wang T, Ren C, Ni J, et al. Genetic Association of Plasma Homocysteine Levels with Gastric Cancer Risk: A Two-Sample Mendelian Randomization Study. Cancer Epidemiol Biomarkers Prev. 2020;29(2):487–492. doi: 10.1158/1055-9965.epi-19-0724 EDN: TNTTJH
- Markovsky AV. Polymorphism of folate metabolism genes and malignant diseases. The Transbaikalian Medical Bulletin. 2018;(1):164–171. EDN: YVPBWL
- Xu W, Cheng Y, Zhu H. Evaluation of an Association of Blood Homocysteine Levels With Gastric Cancer Risk From 27 Case-Control Studies. Medicine (Baltimore). 2016;95(20):e3700. doi: 10.1097/md.0000000000003700 EDN: YCYIYZ
- Lajous M, Lazcano–Ponce E, Hernandez–Avila M, et al. Folate, vitamin B(6), and vitamin B(12) intake and the risk of breast cancer among Mexican women. Cancer Epidemiol Biomarkers Prev. 2006;15(3):443–448. doi: 10.1158/1055-9965.epi-05-0532 EDN: MFNNCJ
- Durda K, Kąklewski K, Gupta S, et al. Serum folate concentration and the incidence of lung cancer. PLoS One. 2017;12(5):e0177441. doi: 10.1371/journal.pone.0177441
- Chang S-C, Goldstein BY, Mu L, et al. Plasma folate, vitamin B12, and homocysteine and cancers of the esophagus, stomach, and liver in a Chinese population. Nutr Cancer. 2015;67(2):212–223. doi: 10.1080/01635581.2015.989375
- Shi Q, Zhang Z, Neumann AS, et al. Case-control analysis of thymidylate synthase polymorphisms and risk of lung cancer. Carcinogenesis. 2005;26(3):649–656. doi: 10.1093/carcin/bgh351 EDN: IMTCTT
- Fang Y, Xiao F, An Z, Hao L. Systematic review on the relationship between genetic polymorphisms of methylenetetrahydrofolate reductase and esophageal squamous cell carcinoma. Asian Pac J Cancer Prev. 2011;12(7):1861–1866.
- Shi Q, Zhang Z, Li G, et al. Polymorphisms of methionine synthase and methionine synthase reductase and risk of lung cancer: a case-control analysis. Pharmacogenet Genomics. 2005;15(8):547–555. doi: 10.1097/01.fpc.0000170916.96650.70
- Aksoy-Sagirli P, Erdenay A, Kaytan-Saglam E, Kizir A. Association of Three Single Nucleotide Polymorphisms in MTR and MTRR Genes with Lung Cancer in a Turkish Population. Genet Test Mol Biomarkers. 2017;21(7):428–432. doi: 10.1089/gtmb.2017.0062
- Choi SW, Mason JB. Folate and carcinogenesis: an integrated scheme. J Nutr. 2000;130(2):129–132. doi: 10.1093/jn/130.2.129
- Johansson M, Relton C, Ueland PM, et al. Serum B vitamin levels and risk of lung cancer. JAMA. 2010;303(23):2377–2385. doi: 10.1001/jama.2010.808
- Zhao T, Gu D, Xu Z, et al. Polymorphism in one-carbon metabolism pathway affects survival of gastric cancer patients: Large and comprehensive study. Oncotarget. 2015;6(11):9564–9576. doi: 10.18632/oncotarget.3259
- Yoo J-Y, Kim S-Y, Hwang J-A, et al. Association Study between Folate Pathway Gene Single Nucleotide Polymorphisms and Gastric Cancer in Koreans. Genomics Inform. 2012;10(3):184–193. doi: 10.5808/gi.2012.10.3.184
- Brasky TM, White E, Chen C-L. Long-Term, Supplemental, One-Carbon Metabolism-Related Vitamin B Use in Relation to Lung Cancer Risk in the Vitamins and Lifestyle (VITAL) Cohort. J Clin Oncol. 2017;35(30):3440–3448. doi: 10.1200/jco.2017.72.7735
- Miranti EH, Stolzenberg–Solomon R, Weinstein SJ, et al. Low vitamin B12 increases risk of gastric cancer: A prospective study of one-carbon metabolism nutrients and risk of upper gastrointestinal tract cancer. Int J Cancer. 2017;141(6):1120–1129. doi: 10.1002/ijc.30809
- Vollset SE, Igland J, Jenab M, et al. The association of gastric cancer risk with plasma folate, cobalamin, and methylenetetrahydrofolate reductase polymorphisms in the European Prospective Investigation into Cancer and Nutrition. Cancer Epidemiol Biomarkers Prev. 2007;16(11):2416–2424. doi: 10.1158/1055-9965.epi-07-0256
- Xiao Q, Freedman ND, Ren J, et al. Intakes of folate, methionine, vitamin B6, and vitamin B12 with risk of esophageal and gastric cancer in a large cohort study. Br J Cancer. 2014;110(5):1328–1333. doi: 10.1038/bjc.2014.17
- Qin X, Cui Y, Shen L, et al. Folic acid supplementation and cancer risk: a meta-analysis of randomized controlled trials. Int J Cancer. 2013; 133(5):1033–1041. doi: 10.1002/ijc.28038
- Stanisławska–Sachadyn A, Borzyszkowska J, Krzemiński M, et al. Folate/homocysteine metabolism and lung cancer risk among smokers. PLoS One. 2019;14(4):e0214462. doi: 10.1371/journal.pone.0214462 EDN: OPFHDR
- Ebbing M, Bønaa KH, Nygård O, et al. Cancer incidence and mortality after treatment with folic acid and vitamin B12. JAMA. 2009;302(19):2119–2126. doi: 10.1001/jama.2009.1622
- Vannella L, Lahner E, Osborn J, Annibale B. Systematic review: gastric cancer incidence in pernicious anaemia. Aliment Pharmacol Ther. 2013;37(4):375–382. doi: 10.1111/apt.12177
- Murphy G, Dawsey SM, Engels EA, et al. Cancer Risk After Pernicious Anemia in the US Elderly Population. Clin Gastroenterol Hepatol. 2015; 13(13):2282-9.e1-4. doi: 10.1016/j.cgh.2015.05.040
- Urbanski G, Hamel J-F, Prouveur B, et al. Strength of the Association of Elevated Vitamin B12 and Solid Cancers: An Adjusted Case-Control Study. J Clin Med. 2020;9(2):474. doi: 10.3390/jcm9020474 EDN: VNWUSU
- Gospodarczyk A, Marczewski K, Gospodarczyk N, et al. Homocysteine and cardiovascular disease — a current review. Wiad Lek. 2022;75(11 Pt 2):2862–2866. doi: 10.36740/wlek202211224 EDN: WIEIJL
- Seliverstov EI, Lobastov KV, Ilyukhin EA, et al. Prevention, Diagnostics and Treatment of Deep Vein Thrombosis. Russian Experts Consensus. Journal of Venous Disorders. 2023;17(3):152–296. doi: 10.17116/flebo202317031152 EDN: RHOTOW
- Ohashi Ya, Ikeda M, Kunitoh H, et al. Venous thromboembolism in cancer patients: report of baseline data from the multicentre, prospective Cancer-VTE Registry. Jpn J Clin Oncol. 2020;50(11):1246–1253. doi: 10.1093/jjco/hyaa112 Erratum in: Jpn J Clin Oncol. 2020;50(11):1346. doi: 10.1093/jjco/hyaa160 EDN: BUJSRY
- Somova OV, Antukh EA, Varadyan AV, et al. Prakticheskiye rekomendatsii po profilaktike i lecheniyu tromboembolicheskikh oslozhneniy u onkologicheskikh bol'nykh. Malignant Tumours. 2022;12(3s2):159–170. (In Russ.) doi: 10.18027/2224-5057-2022-12-3s2-159-170 EDN: IGQAUH
- Muñoz Martín AJ, Ortega I, Font C, et al. Multivariable clinical-genetic risk model for predicting venous thromboembolic events in patients with cancer. Br J Cancer. 2018;118(8):1056–1061. doi: 10.1038/s41416-018-0027-8 EDN: IYYASW
- Kulikova AN, Tonkacheva AA. Risk factors for developing thrombo-embolic complications in oncological patients (a literature review). Angiology and Vascular Surgery. 2022;28(4):119–125. doi: 10.33029/1027-6661-2022-28-4-119-125 EDN: GYWCFF
- Puurunen MK, Gona PN, Larson MG, et al. Epidemiology of venous thromboembolism in the Framingham Heart Study. Thromb Res. 2016; 145:27–33. doi: 10.1016/j.thromres.2016.06.033
- Walker AJ, Card TR, West J, et al. Incidence of venous thrombo-embolism in patients with cancer — a cohort study using linked United Kingdom databases. Eur J Cancer. 2013;49(6):1404–1413. doi: 10.1016/j.ejca.2012.10.021 EDN: TEZVAP
- Gran OV, Smit EN, Brækkan SK, et al. Joint effects of cancer and variants in the factor 5 gene on the risk of venous thromboembolism. Haematologica. 2016; 101(9):1046–1053. doi: 10.3324/haematol.2016.147405
- Timp JF, Braekkan SK, Versteeg HH, Cannegieter SC. Epidemiology of cancer-associated venous thrombosis. Blood. 2013;122(10):1712–1723. doi: 10.1182/blood-2013-04-460121 EDN: OJDFFW
- Khorana AA, Carrier M, Garcia DA, Lee AY. Guidance for the prevention and treatment of cancer-associated venous thromboembolism. J Thromb Thrombolysis. 2016;41(1):81–91. doi: 10.1007/s11239-015-1313-4 EDN: WOOIGZ
- Königsbrügge O, Pabinger I, Ay C. Risk factors for venous thromboembolism in cancer: novel findings from the Vienna Cancer and Thrombosis Study (CATS). Thromb Res. 2014;133(Suppl 2):S39–S43. doi: 10.1016/s0049-3848(14)50007-2 EDN: IQIYVT
- Pabinger I, Thaler J, Ay C. Biomarkers for prediction of venous thromboembolism in cancer. Blood. 2013;122(12):2011–2018. doi: 10.1182/blood-2013-04-460147 EDN: SQTFQP
- Watson HG, Keeling DM, Laffan M, et al. Guideline on aspects of cancer-related venous thrombosis. Br J Haematol. 2015;170(5):640–648. doi: 10.1111/bjh.13556
- Horowitz N, Brenner B. Thrombophilia and cancer. Pathophysiol Haemost Thromb. 2008;36(3–4):131–136. doi: 10.1159/000175151 EDN: YAULBN
- Makatsariya AD, Vorob'yev AV. Problemy trombofilii i trombozov u onkologicheskikh bol'nykh. Effektivnaya Farmakoterapiya. 2008;(6):10–21. (In Russ.) EDN: TCGYAD
- Ludwig RJ, Alban S, Bistrian R, et al. The ability of different forms of heparins to suppress P-selectin function in vitro correlates to their inhibitory capacity on bloodborne metastasis in vivo. Thromb Haemost. 2006;95(3):535–540. doi: 10.1160/th05-07-0515
- Sideras K, Schaefer PL, Okuno SH, et al. Low-molecular-weight heparin in patients with advanced cancer: a phase 3 clinical trial. Mayo Clin Proc. 2006;81(6):758–767. doi: 10.4065/81.6.758
- Gatt A, Makris A, Cladd H, et al. Hyperhomocysteinemia in women with advanced breast cancer. Int J Lab Hematol. 2007;29(6):421–425. doi: 10.1111/j.1751-553x.2007.00907.x
- Smith AD, Kim Y-I, Refsum H. Is folic acid good for everyone? Am J Clin Nutr. 2008;87(3):517–533. doi: 10.1093/ajcn/87.3.517
Дополнительные файлы
