Role of Hypoxia-Inducible Factor 1α in Adaptation to Hypoxia in the Pathogenesis of Novel Coronavirus Disease 2019

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

INTRODUCTION: A novel coronavirus (severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2)) emerged in December 2019 and rapidly spread over the world having provoked a pandemic of respiratory disease. This highly pathogenic virus can attack the lung tissue and derange gas exchange leading to acute respiratory distress syndrome and systemic hypoxia. Hypoxic conditions trigger activation of adaptation mechanisms including hypoxia-inducible factor-1á (HIF-1á) which is involved in the regulation of the key processes, e. g, proliferation and metabolism of cells and angiogenesis. Besides, the level of HIF-1á expression is associated with the intensity of the immune response of an organism including that of the innate immunity mediating inflammatory reaction. Therefore, understanding the peculiarities of the mechanisms underlying the pathogenesis of this disease is of great importance for effective therapy of coronavirus disease 2019 (COVID-19).

AIM: Analysis of the current data on HIF-1á and its effect on the pathogenesis and progression of COVID-19.

The analysis of the relevant domestic and international literature sources was performed in the following sections: HIF-1á as a key factor of adaptation to hypoxia, targets for HIF-1á in the aspect of the pathogenesis of COVID-19, disorders in HIF-1á-mediated adaptation to hypoxia as an element of the pathogenesis of hyperactivation of the immune cells.

CONCLUSION: HIF-1á prevents penetration of SARS-CoV-2 virus into a cell and primarily acts as the main regulator of the proinflammatory activity at the inflammation site surrounded by hypoxia. In the conditions of the deranged metabolic flexibility, a high level of HIF-1á evokes an excessive inflammatory response of the immune cells. A high HIF-1á level in cells of the inflammation focus is associated with enhanced production of the factors of angiogenesis mediating vascular permeability and capillary leakage process. This is accompanied by tissue damage and organ failure. At the same time, HIF-1á can mediate the anti-inflammatory effect through activation of adenosine receptor-dependent pathway, which is considered as a probable protection of cells and organs against damage by hyperactive immune cells.

About the authors

Roman E. Kalinin

Ryazan State Medical University

Email: kalinin-re@yandex.ru
ORCID iD: 0000-0002-0817-9573

MD, Dr. Sci. (Med.), Professor

Russian Federation, Ryazan

Igor' A. Suchkov

Ryazan State Medical University

Email: suchkov_med@mail.ru
ORCID iD: 0000-0002-1292-5452

MD, Dr. Sci. (Med.), Professor

Russian Federation, Ryazan

Sergey N. Raitsev

Ryazan State Medical University

Author for correspondence.
Email: raitsevsergei@yandex.ru
ORCID iD: 0000-0002-6892-1768
Russian Federation, Ryazan

Valentina I. Zvyagina

Ryazan State Medical University

Email: vizvyagina@yandex.ru
ORCID iD: 0000-0003-2800-5789

Cand. Sci. (Biol.), Associate Professor

Russian Federation, Ryazan

Eduard S. Bel'skikh

Ryazan State Medical University

Email: ed.bels@yandex.ru
ORCID iD: 0000-0003-1803-0542

Cand. Sci. (Med.)

 
Russian Federation, Ryazan

References

  1. WHO. Novel Coronavirus (2019-nCoV). Situation Report — 1. 21 January 2020 [Internet]. Available at: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200121-sitrep-1-2019-ncov.pdf?sfvrsn=20a99c10_4. Accessed: 2023 January 31.
  2. Phan LT, Nguyen TV, Luong QC, et al. Importation and Human-to-Human Transmission of a Novel Coronavirus in Vietnam. N Engl J Med. 2020;382(9):872–4. doi: 10.1056/NEJMc2001272
  3. Serebrovska ZO, Chong EY, Serebrovska TV, et al. Hypoxia, HIF-1α, and COVID-19: from pathogenic factors to potential therapeutic targets. Acta Pharmacol Sin. 2020;41(12):1539–46. doi: 10.1038/s41401-020-00554-8
  4. Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. 2020;38(1):1–9. doi: 10.12932/AP-200220-0772
  5. Hirota K. Hypoxia-dependent signaling in perioperative and critical care medicine. J Anesth. 2021;35(5):741–56. doi: 10.1007/s00540-021-02940-w
  6. Semenza GL. HIF-1 and mechanisms of hypoxia sensing. Curr Opin Cell Biol. 2001;13(2):167–71. doi: 10.1016/s0955-0674(00)00194-0
  7. Levchenkova OS, Novikov VE. Inducers of the regulatory factor to hypoxia adaptation. I. P. Pavlov Russian Medical Biological Herald. 2014;(2):133–43. (In Russ).
  8. Batah SS, Fabro AT. Pulmonary pathology of ARDS in COVID-19: A pathological review for clinicians. Respir Med. 2021;176:106239. doi: 10.1016/j.rmed.2020.106239
  9. Matthay MA, Zemans RL, Zimmerman GA, et al. Acute respiratory distress syndrome. Nat Rev. 2019;5(18):1–22. doi: 10.1038/s41572-019-0069-0
  10. Marini JJ, Gattinoni L. Management of COVID-19 Respiratory Distress. JAMA. 2020;323(22):2329–30. doi: 10.1001/jama.2020.6825
  11. Radovanovic D, Rizzi M, Pini S, et al. Helmet CPAP to Treat Acute Hypoxemic Respiratory Failure in Patients with COVID-19: A Management Strategy Proposal. J Clin Med. 2020;9(4):1191. doi: 10.3390/jcm9041191
  12. Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8(5):475–81. doi: 10.1016/S2213-2600(20)30079-5
  13. Guarnotta V, Ferrigno R, Martino M, et al. Glucocorticoid excess and COVID-19 disease. Rev Endocr Metab Disord. 2021;22(4):703–14. doi: 10.1007/s11154-020-09598-x
  14. Prabhakar NR, Semenza GL. Adaptive and maladaptive cardio-respiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol Rev. 2012;92(3):967–1003. doi: 10.1152/physrev.00030.2011
  15. Ravenna L, Salvatori L, Russo MA. HIF3α: the little we know. FEBS J. 2016;283(6):993–1003. doi: 10.1111/febs.13572
  16. Zhukova AG, Kazitskaya AS, Sazontova TG, et al. Hypoxia-inducible factor (HIF): structure, function, and genetic polymorphism. Hygiene and Sanitation, Russian Journal. 2019;98(7):723–8. (In Russ). doi: 10.18821/0016-9900-2019-98-7-723-728
  17. Diao X, Ye F, Zhang M, et al. Identification of oleoylethanolamide as an endogenous ligand for HIF-3α. Nat Commun. 2022;13(1):2529. doi: 10.1038/s41467-022-30338-z
  18. Zeidan EM, Hossain MA, El-Daly M, et al. Mitochondrial Regulation of the Hypoxia-Inducible Factor in the Development of Pulmonary Hypertension. J Clin Med. 2022;11(17):5219. doi: 10.3390/jcm11175219
  19. Urrutia AA, Aragonés J. HIF Oxygen Sensing Pathways in Lung Biology. Biomedicines. 2018;6(2):68. doi: 10.3390/biomedicines6020068
  20. Luk’yanova LD. Signal’nyye mekhanizmy gipoksii. Moscow; 2019. (In Russ).
  21. Tretter L, Patocs A, Chinopoulos C. Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis. Biochim Biophys Acta. 2016;1857(8):1086–101. doi: 10.1016/j.bbabio. 2016.03.012
  22. Xiao M, Yang H, Xu W, et al. Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev. 2012; 26(12):1326–38. doi: 10.1101/gad.191056.112
  23. Paredes F, Williams HC, San Martin A. Metabolic adaptation in hypoxia and cancer. Cancer Lett. 2021;502:133–42. doi: 10.1016/j.canlet. 2020.12.020
  24. Prikhodko VA, Selizarova NO, Okovityi SV. Molecular mechanisms for hypoxia development and adaptation to it. Part I. Arkhiv Patologii. 2021;83(2):52–61. (In Russ). doi: 10.17116/patol20218302152
  25. Baltazar F, Afonso J, Costa M, et al. Lactate Beyond a Waste Metabolite: Metabolic Affairs and Signaling in Malignancy. Front Oncol. 2020;10:231. doi: 10.3389/fonc.2020.00231
  26. Schober AS, Berra E. DUBs, New Members in the Hypoxia Signaling club. Front Oncol. 2016;6:53. doi: 10.3389/fonc.2016.00053
  27. Paz Ocaranza M, Riquelme JA, García L, et al. Counter-regulatory renin-angiotensin system in cardiovascular disease. Nat Rev Cardiol. 2020;17(2):116–29. doi: 10.1038/s41569-019-0244-8
  28. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2):271–80.e8. doi: 10.1016/j.cell.2020.02.052
  29. Lian G, Li X, Zhang L, et al. Macrophage metabolic reprogramming aggravates aortic dissection through the HIF1α-ADAM17 pathway*. EBioMedicine. 2019;49:291–304. doi: 10.1016/j.ebiom.2019.09.041
  30. Zhang H, Penninger JM, Li Y, et al. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020;46(4):586–90. doi: 10.1007/s00134-020-05985-9
  31. Zhang R, Su H, Ma X, et al. MiRNA let-7b promotes the development of hypoxic pulmonary hypertension by targeting ACE2. Am J Physiol Lung Cell Mol Physiol. 2019;316(3):L547–57. doi: 10.1152/ajplung.00387.2018
  32. Fernandez EV, Reece KM, Ley AM, et al. Dual targeting of the androgen receptor and hypoxia-inducible factor 1α pathways synergistically inhibits castration-resistant prostate cancer cells. Mol Pharmacol. 2015;87(6):1006–12. doi: 10.1124/mol.114.097477
  33. Wing PAC, Keeley TP, Zhuang X, et al. Hypoxic and pharmacological activation of HIF inhibits SARS-CoV-2 infection of lung epithelial cells. Cell Rep. 2021;35(3):109020. doi: 10.1016/j.celrep.2021.109020
  34. Olson KA, Schell JC, Rutter J, et al. Pyruvate and Metabolic Flexibility: Illuminating a Path Toward Selective Cancer Therapies. Trends Biochem Sci. 2016;41(3):219–30. doi: 10.1016/j.tibs.2016.01.002
  35. Sulkshane P, Ram J, Thakur A, et al. Ubiquitination and receptor-mediated mitophagy converge to eliminate oxidation-damaged mitochondria during hypoxia. Redox Biol. 2021;45:102047. doi: 10.1016/j.redox.2021.102047
  36. Smith RL, Soeters MR, Wüst RCI, et al. Metabolic Flexibility as an Adaptation to Energy Resources and Requirements in Health and Disease. Endocr Rev. 2018;39(4):489–517. doi: 10.1210/er.2017-00211
  37. Vaupel P, Schmidberger H, Mayer A. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression. Int J Radiat Biol. 2019;95(7):912–9. doi: 10.1080/09553002.2019.1589653
  38. Semenza GL. Regulation of cancer cell metabolism by hypoxia-inducible factor 1. Semin Cancer Biol. 2009;19(1):12–6. doi: 10.1016/j.semcancer.2008.11.009
  39. Walmsley SR, Chilvers ER, Thompson AA, et al. Prolyl hydroxylase 3 (PHD3) is essential for hypoxic regulation of neutrophilic inflammation in humans and mice. J Clin Invest. 2011;121(3):1053–63. doi: 10.1172/JCI43273
  40. Jahani M, Dokaneheifard S, Mansouri K. Hypoxia: A key feature of COVID-19 launching activation of HIF-1 and cytokine storm. J Inflamm (Lond). 2020;17:33. doi: 10.1186/s12950-020-00263-3
  41. Rajasundaram S. Adenosine A2A Receptor Signaling in the Immunopathogenesis of Experimental Autoimmune Encephalomyelitis. Front Immunol. 2018;9:402. doi: 10.3389/fimmu.2018.00402
  42. Galván–Peña S, O'Neill LAJ. Metabolic reprograming in macrophage polarization. Front Immunol. 2014;5:420. doi: 10.3389/fimmu. 2014.00420
  43. Shapouri–Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233(9):6425–40. doi: 10.1002/jcp.26429
  44. Ramasamy S, Subbian S. Critical Determinants of Cytokine Storm and Type I Interferon Response in COVID-19 Pathogenesis. Clin Microbiol Rev. 2021;34(3):e00299-20. doi: 10.1128/CMR.00299-20
  45. Shibuya M. Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) Signaling in Angiogenesis: A Crucial Target for Anti- and Pro-Angiogenic Therapies. Genes Cancer. 2011;2(12):1097–105. doi: 10.1177/1947601911423031
  46. Walmsley SR, Print C, Farahi N, et al. Hypoxia-induced neutrophil survival is mediated by HIF-1alpha-dependent NF-kappaB activity. J Exp Med. 2005;201(1):105–15. doi: 10.1084/jem.20040624
  47. Juss JK, House D, Amour A, et al. Acute Respiratory Distress Syndrome Neutrophils Have a Distinct Phenotype and Are Resistant to Phosphoinositide 3-Kinase Inhibition. Am J Respir Crit Care Med. 2016;194(8):961–73. doi: 10.1164/rccm.201509-1818OC
  48. Lyubavin AV, Kotlyarov SN. Peculiarities of the Course of Acute Coronary Syndrome in Patients with New Coronavirus Infection. Nauka Molodykh (Eruditio Juvenium). 2022;10(1):101–12. (In Russ). doi: 10.23888/HMJ2022101101-112
  49. Chauhan A, Kaur R, Chakrbarti P, et al. ‘Silent Hypoxemia’ Leads to Vicious Cycle of Infection, Coagulopathy and Cytokine Storm in COVID-19: Can Prophylactic Oxygen Therapy Prevent It? Indian J Clin Biochem. 2021;36(4):468–72. doi: 10.1007/s12291-021-00967-0

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Regulation of the hypoxia-inducible factor, 1α [18, 19]. Notes: ROS — reactive oxygen species, TAC– tricarbonic acid cycle, RNA — ribonucleic acid, CBP — cyclic AMP response element binding protein (co-activators of CREB-binding protein), FIH — factor inhibiting HIF; GLUT — glucose transporter, HIF — hypoxia-inducible factor, HK — hexokinase, HREs — hypoxia response elements, LDHA — lactate dehydrogenase A, PDK — pyruvate dehydrogenase kinase, VEGF — vascular endothelial growth factor, VHL — von Hippel–Lindau suppressor protein.

Download (88KB)
3. Fig. 2. Activation of hypoxia-inducible factor 1α signal pathway associated with reduction of the expression of ACE-2 and TMPRSS2 and an increase in the activity of ADAM17 metalloproteinase. Notes: SARS-CoV-2 — severe acute respiratory syndrome-related coronavirus 2, HIF — hypoxia-inducible factor, ACE — angiotensin-converting enzyme, TMPRSS — serine transmembrane protease, ADAM — a disintegrin and metalloproteinase domain, mRNA — matrix ribonucleic acid.

Download (32KB)

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».