Protective Effects of L-Arginine on Mitochondria of Rat Epididymis in Hyperhomocysteinemia Induced by Prolonged Methionine Load

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

INTRODUCTION: The study of markers of oxidative stress, metabolites of nitric oxide (II) (NOx) and the balance of carnitine fractions in mitochondria of rat epididymis, permits to evaluate the protective role of L-arginine in experimental hyperhomocysteinemia.

AIM: To study the influence of L-arginine on the parameters of energy metabolism, level of NO metabolites, oxidative modification of proteins and balance of carnitine fractions in mitochondria of the head and tail of rat epididymis in hyperhomocysteinemia.

MATERIALS AND METHODS: In animals of group 1 (n = 8), severe hyperhomocysteinemia (HHcy) was modeled by administration of methionine suspension at a dose of 1.5 g/kg twice daily for 21 days with addition of 1% methionine in drinking water; group 2 rats (n = 8) received suspension base without methionine; animals of group 3 (n = 8) were daily administered L-arginine solution at a dose of 500 mg/kg intragastrically against the background methionine load from day 11 to day 21; group 4 animals (n = 8) were administered L-arginine solution of at a dose of 500 mg/kg for 10 days; group 5 (n = 8) served as a control for group 4 and received drinking water intragastrically. Concentrations of total homocysteine and NOx were determined in serum. In the mitochondrial fraction of the homogenate of epididymis tissues, the level of oxidatively modified proteins (OMP), the concentration of NOx, lactate and carnitine fractions, the activity of lactate dehydrogenase (LDH), superoxide dismutase (SOD), H+-ATPase, succinate dehydrogenase (SDH) were evaluated.

RESULTS: HHcy was accompanied by reduction of the level of NOx in blood serum and mitochondria of epididymis head tissues. In mitochondria of tissues of head and tail of epididymis, a marked reduction of all fractions of carnitine, activity of LDH, H+-ATPase, SDH, increase in the activity of SOD and in the level of OMP were observed. With modeled HHcy, L-arginine reduced the extent of hyperhomocysteinemia, prevented reduction of NOx level in the blood serum and epididymis head and reduced the content of OMP of the epididymis mitochondria.

CONCLUSION: L-arginine introduced in combination with methionine, reduces the extent of severity of hyperhomocysteinemia. The positive effect of L-arginine on increase in the concentration of NOx metabolites in blood serum and mitochondria of epididymis in conditions of methionine load was also confirmed. L-arginine exhibits antioxidant properties, reducing the severity of oxidative stress induced by hyperhomocysteinemia. Differences in the adaptive response to oxidative stress of the mitochondria of the head and tail of epididymis were demonstrated.

About the authors

Valentina I. Zvyagina

Ryazan State Medical University

Email: vizvyagina@yandex.ru
ORCID iD: 0000-0003-2800-5789
SPIN-code: 7553-8641

Cand. Sci. (Biol.), Associate Professor

 
Russian Federation, Ryazan

Konstantin B. Shumaev

The Federal Research Centre ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences

Email: tomorov@mail.ru
ORCID iD: 0000-0001-8835-5188
SPIN-code: 7765-3295

Dr. Sci. (Biol.)

 
Russian Federation, Moscow

Eduard S. Belskikh

Ryazan State Medical University

Email: ed.bels@yandex.ru
ORCID iD: 0000-0003-1803-0542
SPIN-code: 9350-9360

MD, Cand. Sci. (Med.)

 
Russian Federation, Ryazan

Oleg M. Uryasyev

Ryazan State Medical University

Email: uryasev08@yandex.ru
ORCID iD: 0000-0001-8693-4696
SPIN-code: 7903-4609

MD, Dr. Sci. (Med.), Professor

Russian Federation, Ryazan

Sabina R. Akhmedova

Ryazan State Medical University

Author for correspondence.
Email: danfeyt@mail.ru
ORCID iD: 0000-0002-6437-8120
Russian Federation, Ryazan

Yulia A. Marsyanova

Ryazan State Medical University

Email: yuliyamarsyanova@yahoo.com
ORCID iD: 0000-0003-4948-4504
SPIN-code: 4075-3169

 

 
Russian Federation, Ryazan

Anna M. Shitikova

Ryazan State Medical University

Email: anyakudlaeva@mail.ru
ORCID iD: 0000-0002-4004-9058
SPIN-code: 3416-3961

Cand. Sci. (Biol.), Associate Professor

Russian Federation, Ryazan

Olga N. Suchkova

Ryazan State Medical University

Email: suchkovaon@gmail.com
ORCID iD: 0000-0001-5227-7288
SPIN-code: 2282-3653
Russian Federation, Ryazan

References

  1. Agarwal A, Mulgund A, Hamada A, et al. A unique view on male infertility around the globe. Reproductive Biology and Endocrinology. 2015;13:37. doi: 10.1186/s12958-015-0032-1
  2. Datta J, Palmer MJ, Tanton C, et al. Prevalence of infertility and help seeking among 15 000 women and men. Human Reproduction. 2016;31(9):2108–18. doi: 10.1093/humrep/dew123
  3. Aitken RJ, Baker MA. The Role of Genetics and Oxidative Stress in the Etiology of Male Infertility-A Unifying Hypothesis? Frontiers in Endocrinology. 2020;11:581838. doi: 10.3389/fendo.2020.581838
  4. Aitken RJ, Flanagan HM, Connaughton H et al. Involvement of homocysteine, homocysteine thiolactone, and paraoxonase type 1 (PON-1) in the etiology of defective human sperm function. Andrology. 2016;4(2): 345–60. doi: 10.1111/andr.12157
  5. Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nature Reviews. Molecular Cell Biology. 2020;21(7):363–83. doi: 10.1038/s41580-020-0230-3
  6. Ramalho–Santos J, Varum S, Amaral S, et al. Mitochondrial functionality in reproduction: from gonads and gametes to embryos and embryonic stem cells. Human Reproduction Update. 2009;15(5):553–72. doi: 10.1093/humupd/dmp016
  7. Belskikh ES, Zvyagina VI, Uryas’ev OM. Modern concepts of the pathogenesis and approaches to correction of mitochondrial dysfunction. Nauka Molodykh (Eruditio Juvenium). 2016;(1):104–12. (In Russ).
  8. Smits RM, Mackenzie–Proctor R, Yazdani A, et al. Antioxidants for male subfertility. The Cochrane Database of Systematic Reviews. 2019;3(3):CD007411. doi: 10.1002/14651858.CD007411.pub4
  9. Jung JH, Seo JT. Empirical medical therapy in idiopathic male infertility: Promise or panacea? Clinical and Experimental Reproductive Medicine. 2014;41(3):108–14. doi: 10.5653/cerm.2014.41.3.108
  10. Agarwal A, Leisegang K, Majzoub A, et al. Utility of Antioxidants in the Treatment of Male Infertility: Clinical Guidelines Based on a Systematic Review and Analysis of Evidence. The World Journal of Men’s Health. 2021;39(2):233–90. doi: 10.5534/wjmh.200196
  11. West SG, Likos–Krick A, Brown P, et al. Oral L-arginine improves hemodynamic responses to stress and reduces plasma homocysteine in hypercholesterolemic men. The Journal of Nutrition. 2005;135(2):212–7. doi: 10.1093/jn/135.2.212
  12. Lee SJ, Park SH, Chung JF, et al. Homocysteine-induced peripheral microcirculation dysfunction in zebrafish and its attenuation by L-arginine. Oncotarget. 2017;8(35):58264–71. doi: 10.18632/oncotarget.16811
  13. Elbashir S, Magdi Y, Rashed A, et al. Epididymal contribution to male infertility: An overlooked problem. Andrologia. 2021;53(1):e13721. doi: 10.1111/and.13721
  14. Park Y–J, Pang M–G. Mitochondrial Functionality in Male Fertility: From Spermatogenesis to Fertilization. Antioxidants. 2021;10(1):98. doi: 10.3390/antiox10010098
  15. Medvedev DV, Zvyagina VI, Fomina MA. Modeling of severe hyperhomocysteinemia in rats. I.P. Pavlov Russian Medical Biological Herald. 2014;(4):42–6. (In Russ).
  16. Sun X, Sharma S, Fratz S, et al. Disruption of endothelial cell mitochondrial bioenergetics in lambs with increased pulmonary blood flow. Antioxidants & Redox Signaling. 2013;18(14):1739–52. doi: 10.1089/ars.2012.4806
  17. Prokhorova MI, Zolotova LA, Flerov MA, et al.; Prokhorova MI, editor. Metody biokhimicheskikh issledovaniy (lipidnyy i energeticheskiy obmen). Leningrad: Izdatel’stvo Leningradskogo gosudarstvennogo universiteta; 1982. (In Russ).
  18. Metelskaya VA, Gumanova NG. Screening as a method for determining the serum level of nitric oxide metabolites. Russian Clinical Laboratory Diagnostics. 2005;(6):15–7. (In Russ).
  19. Serebrov VYu, Sukhanova GA, editors. Bioenergetika kletki. Tomsk: Sibirskiy gosudarstvennyy meditsinskiy universitet; 2008. P. 79–82. (In Russ).
  20. Kostyuk VA, Potapovich AI, Kovaleva ZhV. A simple and sensitive method of determination of superoxide dismutase activity based on the reaction of quercetin oxidation. Voprosy Meditsinskoi Khimii. 1990;36(2):88–91. (In Russ).
  21. Fomina MA, Abalenikhina YuV. Okislitel’naya modifikatsiya belkov tkaney pri izmenenii sinteza oksida azota. Moscow: GEOTAR-Media; 2018. (In Russ).
  22. Wan L, Hubbard RW. Determination of free and total carnitine with a random-access chemistry analyzer. Clinical Chemistry. 1998;44(4):810–6.
  23. Zvyagina VI, Belskikh ES, Uryasev OM, et al. Influence of carnitine chloride on mitochondria of the heart of rats during the modeling of hyperhomocysteinemia. Medical News of the North Caucasus. 2018; 13(1):78–81. doi: 10.14300/mnnc.2018.13022
  24. Zvyagina VI, Belskikh ES. Carnitine Chloride Reduces the Severity of Experimental Hyperhomocysteinemia and Promotes Lactate Utilization by the Mitochondrial Fraction of the Rat Epididymis. Biochemistry (Moscow). Supplement Series B: Biomedical Chemistry. 2021;15:326–36. doi: 10.1134/S1990750821040119
  25. Zvyagina VI, Belskikh ES. Comparative Assessment of the Functional Activity of Rat Epididymal Mitochondria in Oxidative Stress Induced by Hyperhomocysteinemia and L-NAME Administration. Journal of Evolutionary Biochemistry and Physiology. 2022;58:364–79. doi: 10.1134/S0022093022020065
  26. Banjarnahor S, Rodionov RN, König J, et al. Transport of L-Arginine Related Cardiovascular Risk Markers. Journal of Clinical Medicine. 2020;9(12):3975. doi: 10.3390/jcm9123975
  27. Liu X, Hou L, Xu D, et al. Effect of asymmetric dimethylarginine (ADMA) on heart failure development. Nitric Oxide. 2016;54:73–81. doi: 10.1016/j.niox.2016.02.006
  28. Uryas'yev OM, Shakhanov A, Kanatbekova ZK. Nitric oxide and regulators of its synthesis in chronic obstructive pulmonary disease. I.P. Pavlov Russian Medical Biological Herald. 2021;29(3):427–34. (In Russ). doi: 10.17816/PAVLOVJ62681
  29. Tain Y–L, Hsu C–N. Toxic Dimethylarginines: Asymmetric Dimethylarginine (ADMA) and Symmetric Dimethylarginine (SDMA). Toxins. 2017;9(3):92. doi: 10.3390/toxins9030092
  30. Tain Y–L, Hsu C–N. Interplay between Oxidative Stress and Nutrient Sensing Signaling in the Developmental Origins of Cardiovascular Disease. International Journal of Molecular Sciences. 2017;18(4):841. doi: 10.3390/ijms18040841
  31. Fulton MD, Brown T, Zheng YG. The Biological Axis of Protein Arginine Methylation and Asymmetric Dimethylarginine. International Journal of Molecular Sciences. 2019;20(13):3322. doi: 10.3390/ijms20133322
  32. Robinson JW, Felber JP. A survey of the effect of other amino-acids on the absorption of L-arginine and L-lysine by the rat intestine. Gastroenterologia. 1964;101:330–8. doi: 10.1159/000202330
  33. Robinson JW. Interactions between neutral and dibasic amino acids for uptake by the rat intestine. European Journal of Biochemistry. 1968;7(1):78–89. doi: 10.1111/j.1432-1033.1968.tb19577.x
  34. Stühlinger MC, Tsao PS, Her JH, et al. Homocysteine impairs the nitric oxide synthase pathway: role of asymmetric dimethylarginine. Circulation. 2001;104(21):2569–75. doi: 10.1161/hc4601.098514
  35. Liang M, Wang Z, Li H, et al. L-Arginine induces antioxidant response to prevent oxidative stress via stimulation of glutathione synthesis and activation of Nrf2 pathway. Food and Chemical Toxicology. 2018;115:315–28. doi: 10.1016/j.fct.2018.03.029
  36. Shumaev KB, Kosmachevskaya OV, Grachev DI, et al. Possible mechanism of antioxidant action of dinitrosyl iron complexes. Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry. 2021;15:313–9. doi: 10.1134/S1990750821040090
  37. Kosmachevskaya OV, Nasybullina EI, Shumaev KB, et al. Protective Effect of Dinitrosyl Iron Complexes Bound with Hemoglobin on Oxidative Modification by Peroxynitrite. International Journal of Molecular Sciences. 2021;22(24):13649. doi: 10.3390/ijms222413649

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Concentration of NOx, homocysteine and free carnitine in blood serum of study groups of animals, Me [Q1; Q3].

Download (47KB)
3. Fig. 2. Comparison of the levels of NO (II) metabolites and lactate of mitochondria in the study models, Me [Q1; Q3].

Download (55KB)
4. Fig. 3. Comparison of study parameters of oxidative stress of mitochondria in study models, Me [Q1; Q3].

Download (72KB)
5. Fig. 4. Comparison of the activity of mitochondrial enzymes in the study models, Me [Q1; Q3].

Download (78KB)
6. Fig. 5. Comparison of the content of L-carnitine in mitochondria of homogenates of the head and tail of epididymis in the study models, Me [Q1; Q3].

Download (71KB)
7. Fig. 6. Levels of NO (II) metabolites and carnitine in blood serum of intact animals and with introduction of L-arginine, Me [Q1; Q3].

Download (35KB)
8. Fig. 7. Changes of the studied parameters of mitochondria of the head and tail of epididymis with administration of L-arginine, Me [Q1; Q3].

Download (81KB)
9. Fig. 8. A scheme of probable mechanisms of reduction of the level of homocysteine with administration of L-arginine.

Download (66KB)

Copyright (c) 2022 Zvyagina V.I., Shumaev K.B., Belskikh E.S., Uryasyev O.M., Akhmedova S.R., Marsyanova Y.A., Shitikova A.M., Suchkova O.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies