Intracellular Location and Function of Nuclear Factor of Erythroid Origin 2 (Nrf2) in Modeling Oxidative Stress in vitro

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

INTRODUCTION: Nuclear factor E2-related factor 2 (Nrf2) is a member of cap‘n’collar (CNC) family of subfamily of leucine zipper transcription factors that regulates cell protection against toxic substances and oxidants.

AIM: To determine location, mechanism of activation and role of Nrf2 in conditions of oxidative stress in vitro.

MATERIALS AND METHODS: The study was performed on human colon adenocarcinoma cell line (Caco-2). Oxidative stress (OS) was modeled by adding hydrogen peroxide (Н2О2) at concentrations of 0.1 µМ–100 µМ to the nutritive medium and incubation for 24 and 72 hours. In assessment of Nrf2 function, its inhibitor ― AEM1 ― was added to cells at a concentration of 5 µМ. The extent of OS development was determined using photometric methods by the concentration of protein SH-groups and carbonyl derivatives of protein, and the activity of superoxide dismutase (SOD). Viability of cells was assessed by the results of cytotoxic test (MTT assay), the amount of Nrf2 in the cytoplasm and nucleus was determined by heterogenous ELISA method.

RESULTS: Incubation of Caco-2 cells with Н2О2 resulted in decrease in the level of protein SH-groups and increase in the concentration of carbonyl derivatives of protein. In incubation with H2O2 at concentrations of 0.1 µМ–10 µМ for 24 hours and 10 µМ for 72 hours, the activity of SOD increased. At concentrations of Н2О2 of 50 µМ and 100 µМ (24 hour and 72 hour), SOD activity and viability of cells decreased. Exposure to Н2О2 led to translocation of Nrf2 from the cytoplasm into nucleus. Direct correlation dependence was revealed between concentration of protein SH-groups and the amount of Nrf2 in the cytoplasm in incubation with H2O2 for 24 hour (r = 0.44, р = 0.03), 72 hour (r = 0.34, р = 0.05). The amount of Nrf2 in the nucleus positively correlated with SOD activity in the cytoplasm on exposure to H2O2 for 24 hour (r = 0.77, р = 0.0001) and 72 hour (r = 0.36, р = 0.06). In inhibition of Nrf2 in conditions of exposure to H2O2, the viability of cells decreased to a larger extent.

CONCLUSION: Hydrogen peroxide induces the nuclear translocation of Nrf2, which promotes activation of antioxidant enzyme SOD and preserves viability of cells of OS conditions in vitro.

About the authors

Yuliya V. Abalenikhina

Ryazan State Medical University

Author for correspondence.
Email: abalenihina88@mail.ru
ORCID iD: 0000-0003-0427-0967
SPIN-code: 4496-9027

Cand. Sci. (Biol.), Associate Professor

Russian Federation, Ryazan

Pelageya D. Erokhina

Ryazan State Medical University

Email: erokhina.pelageya96@yandex.ru
ORCID iD: 0000-0003-4802-5656
SPIN-code: 1480-6854

ассистент кафедры фармакологии с курсом фармации ФДПО

Russian Federation, Ryazan

Adamiana A. Seidkuliyeva

Ryazan State Medical University

Email: adamiana@inbox.ru
ORCID iD: 0000-0003-4434-8415
SPIN-code: 2431-6897
Russian Federation, Ryazan

Ol’ga A. Zav’yalova

Ryazan State Medical University

Email: olga.zavyalova.1999@mail.ru
ORCID iD: 0000-0002-9010-385X
SPIN-code: 7590-9135

ассистент кафедры фармацевтической химии

Russian Federation, Ryazan

Aleksey V. Shchul’kin

Ryazan State Medical University

Email: alekseyshulkin@rambler.ru
ORCID iD: 0000-0003-1688-0017
SPIN-code: 2754-1702

MD, Dr. Sci. (Med.), Associate Professor

Russian Federation, Ryazan

Elena N. Yakusheva

Ryazan State Medical University

Email: e.yakusheva@rzgmu.ru
ORCID iD: 0000-0001-6887-4888
SPIN-code: 2865-3080

MD, Dr. Sci. (Med.), Professor

Russian Federation, Ryazan

References

  1. Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nature Reviews. Molecular Cell Biology. 2020;21(7):363–83. doi: 10.1038/s41580-020-0230-3
  2. Jakubczyk K, Dec K, Kałduńska J, et al. Reactive oxygen species ― sources, functions, oxidative damage. Polski Merkuriusz Lekarski. 2020;48(284):124–7.
  3. Moi P, Chan K, Asunis I, et al. Isolation of NF-E2-related factor 2 (Nrf2), a NFE2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the β-globin locus control region. Proceedings of the National Academy of Sciences of the United States of America. 1994;91(21):9926–30. doi: 10.1073/pnas.91.21.9926
  4. Ma Q. Role of nrf2 in oxidative stress and toxicity. Annual Review of Pharmacology and Toxicology. 2013;53:401–26. doi: 10.1146/annurev-pharmtox-011112-140320
  5. Casalino E, Calzaretti G, Landriscina M, et al. The Nrf2 transcription factor contributes to the induction of alpha-class GST isoenzymes in liver of acute cadmium or manganese intoxicated rats: comparison with the toxic effect on NAD(P)H:quinone reductase. Toxicology. 2007;237(1–3):24–34. doi: 10.1016/j.tox.2007.04.020
  6. Ekuban FA, Zong C, Takikawa M, et al. Genetic ablation of Nrf2 exacerbates neurotoxic effects of acrylamide in mice. Toxicology. 2021;456:152785. doi: 10.1016/j.tox.2021.152785
  7. Kim EN, Lim JH, Kim MY, et al. Resveratrol, an Nrf2 activator, ameliorates aging-related progressive renal injury. Aging (Albany NY). 2018;10(1): 83–99. doi: 10.18632/aging.101361
  8. Lin X, Bai D, Wei Z, et al. Curcumin attenuates oxidative stress in RAW264.7 cells by increasing the activity of antioxidant enzymes and activating the Nrf2-Keap1 pathway. PLoS One. 2019;14(5):e0216711. doi: 10.1371/journal.pone.0216711
  9. Sambuy Y, De Angelis I, Ranaldi G, et al. The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell Biology and Toxicology. 2005;21(1):1–26. doi: 10.1007/s10565-005-0085-6
  10. Bollong MJ, Yun H, Sherwood L, et al. A small molecule inhibits deregulated NRF2 transcriptional activity in cancer. ACS Chemical Biology. 2015;10(10):2193–8. doi: 10.1021/acschembio.5b00448
  11. Kalinin RE, Suchkov IA, Mzhavanadze ND, et al. Comparison of cytotoxicity of vascular prostheses in vitro. I.P. Pavlov Russian Medical Biological Herald. 2020;28(2):183–92. (In Russ). doi: 10.23888/PAVLOVJ2020282183-192
  12. Weber D, Davies MJ, Grune T. Determination of protein carbonyls in plasma, cell extracts, tissue homogenates, isolated proteins: focus on sample preparation and derivatization conditions. Redox Biology. 2015;5:367–80. doi: 10.1016/j.redox.2015.06.005
  13. Boschi–Muller S, Azza S, Sanglier–Cianferani S, et al. A sulfenic acid enzyme intermediate is involved in the catalytic mechanism of peptide methionine sulfoxide reductase from Escherichia coli. The Journal of Biological Chemistry. 2000;275(46):35908–13. doi: 10.1074/jbc.M006137200
  14. Ellman GL. Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics. 1959;82(1):70–7. doi: 10.1016/0003-9861(59)90090-6
  15. Kostiuk VA, Potapovich AI, Kovaleva ZhV. A simple and sensitive method of determination of superoxide dismutase activity based on the reaction of quercetin oxidation. Voprosy Meditsinskoi Khimii. 1990;36(2):88–91. (In Russ).
  16. Matveeva EL, Spirkina ES, Chegurov OK, et al. Lipid peroxidation profile of synovial fluid in patients with gonarthrosis accompanied by defects of articular surface. Science of the young (Eruditio Juvenium). 2020;8(1):70–5. (In Russ). doi: 10.23888/HMJ20208170-75
  17. Radak Z, Zhao Z, Goto S, et al. Age-associated neurodegeneration and oxidative damage to lipids, proteins and DNA. Molecular Aspects of Medicine. 2011;32(4–6):305–15. doi: 10.1016/j.mam.2011.10.010
  18. Kosmachevskaya OV, Shumayev KB, Topunov AF. Karbonil’nyy stress: ot bakteriy do cheloveka. Petrozavodsk: IP Markov N.A.; 2018. (In Russ).
  19. Kang KA, Hyun JW. Oxidative stress, Nrf2, and epigenetic modification contribute to anticancer drug resistance. Toxicological Research. 2017;33(1):1–5. doi: 10.5487/TR.2017.33.1.001
  20. Wen Zh, Liu W, Li X, et al. A Protective Role of the NRF24 Keap1 Pathway in Maintaining Intestinal Barrier Function. Oxidative Medicine and Cellular Longevity. 2019;2019:e1759149. doi: 10.1155/2019/1759149

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Evaluation of development of oxidative stress in Caco-2 line cells on exposure to hydrogen peroxide at concentrations of 0.1–100 µM for 24 and 72 hours: concentration of SH-groups (a), concentration of carbonyl derivatives of proteins (b). Note: * statistically significant differences from control, р < 0.05 (Newman–Keuls test).

Download (87KB)
3. Fig. 2. Activity of superoxide dismutase in cells of Caco-2 line on exposure to hydrogen peroxide at concentrations of 0.1–100 µM within 24 and 72 hours. Note: * statistically significant differences from control, р < 0.05 (Newman-Keuls test).

Download (45KB)
4. Fig. 3. The amount of nuclear factor erythroid E2-related factor 2 (Nrf2) in the cytoplasm and nucleus of cells of Caco-2 line in vitro on exposure to hydrogen peroxide at concentrations of 0.1–100 µM within 24 (a) and 72 hours (b). Note: c — control; * — statistically significant differences from control, р < 0.05 (Newman-Keuls test).

Download (69KB)
5. Fig. 4. Viability of cells of Caco-2 line on exposure to hydrogen peroxide at concentrations of 0.1–100 µM for 24 (a) and 72 hours (b) independently and with inhibition of Nrf2 synthesis (2). Note: c — control; * — statistically significant differences from control, р < 0.05 (Newman–Keuls test); # — сstatistically significant differences from Н2О2 group, р < 0.05 (Newman–Keuls test).

Download (41KB)
6. Fig. 5. Mechanism of protective effect of Nrf2 erythroid transcription factor in oxidative stress induced by hydrogen peroxide at concentrations of 0.1–100 µM in vitro. Notes: ROS — reactive oxygen species; ARE — antioxidant response element ; Cul3 — cullin 3 protein; keap1 — kelch-like ECH associated protein 1; Maf — musculoaponeurotic fibrosarcoma; Nrf2 — nuclear factor E2-related factor 2; SOD — superoxide dismutase; Ub — ubiquitin protein.

Download (44KB)

Copyright (c) 2022 Abalenikhina Y.V., Erokhina P.D., Seidkuliyeva A.A., Zav’yalova O.A., Shchul’kin A.V., Yakusheva E.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies