Микроиглы в офтальмологии: минимально инвазивная альтернатива традиционным методам. Обзор литературы

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Современные методы доставки лекарственных средств в офтальмологии ограничены анатомо-физиологическими барьерами глаза, что снижает биодоступность препаратов и требует частых инвазивных вмешательств. Одним из наиболее перспективных направлений решения этих проблем являются микроиглы — инновационные системы, обеспечивающие таргетированную, минимально инвазивную и эффективную доставку лекарств в структуры глаза. В обзоре рассмотрены основные типы микроигл (полые, растворяющиеся и с покрытием), их конструктивные особенности, механизмы действия, преимущества и ограничения. Описаны пути их введения в ткани глаза, включая роговицу, склеру и супрахориоидальное пространство, что позволяет выбирать оптимальную зону для терапии заболеваний переднего и заднего сегментов. Особое внимание уделено технологическим аспектам — методам производства (микроэлектромеханические системы, так называемые MEMS, 3D-печать, лазерная абляция), покрытия, стерилизации и механической валидации. Обзор охватывает широкий спектр исследований in vitro и in vivo, подтверждающих способность микроигл обеспечивать пролонгированное высвобождение препаратов, снижать риск системных побочных эффектов и повышать приверженность пациентов к терапии. Показано, что растворяющиеся и полые микроиглы обладают высокой перспективностью при лечении глаукомы, кератита, макулярной дегенерации, инфекционных и воспалительных заболеваний глаза. Рассматриваются также комбинированные платформы, объединяющие микроиглы с наночастицами и гидрогелями, расширяющие спектр возможных применений. Таким образом, микроиглы представляют собой революционную платформу в офтальмологии, способную значительно повысить эффективность фармакотерапии и улучшить качество жизни пациентов. Дальнейшие исследования, направленные на оптимизацию конструкции, биосовместимости и контроля высвобождения, являются ключевыми для их клинического внедрения.

Об авторах

Эмин Хмеди

Первый Московский государственный медицинский университет им. акад. И.М. Сеченова (Сеченовский университет)

Email: hmaidi96@yandex.com
ORCID iD: 0009-0003-9164-2825
Россия, Москва

Кирилл Олегович Семенцов

Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова

Автор, ответственный за переписку.
Email: kirillsemencov95@gmail.com
ORCID iD: 0009-0002-0029-1023
Россия, Санкт-Петербург

Илья Андреевич Зернов

Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова

Email: ilya.zernov.1994@mail.ru
ORCID iD: 0009-0008-1007-4560
Россия, Санкт-Петербург

Амир Залимович Дикинов

Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова

Email: Rex014032@mail.ru
ORCID iD: 0009-0007-8232-7240
Россия, Санкт-Петербург

Динара Азатовна Гараева

Стоматологическая клиника «АРТ-стом»

Email: d_zai@mail.ru
ORCID iD: 0009-0009-4759-9376

MD

Россия, Набережные Челны

Ксения Андреевна Холкина

Башкирский государственный медицинский университет

Email: Kholkina_2001@mail.ru
ORCID iD: 0009-0006-1101-0222
Россия, Уфа

Елизавета Денисовна Тиханович

Башкирский государственный медицинский университет

Email: tixanovich.elizaveta@bk.ru
ORCID iD: 0009-0001-5343-5118
Россия, Уфа

Анастасия Алексеевна Ловушкина

Российский национальный исследовательский медицинский университет им. Н.И. Пирогова

Email: alovushkina@mail.ru
ORCID iD: 0009-0005-0933-3893
Россия, Москва

Эльвира Робертовна Гумерова

Башкирский государственный медицинский университет

Email: El_vir_ka002@mail.ru
ORCID iD: 0009-0006-0044-9790
Россия, Уфа

Кирилл Александрович Лиликов

Сибирский государственный медицинский университет

Email: kirill-lilikov@mail.ru
ORCID iD: 0009-0009-0798-6822
Россия, Томск

Анастасия Павловна Фомина

Сибирский государственный медицинский университет

Email: anastasiyafomina2001@mail.ru
ORCID iD: 0009-0005-1023-3697
Россия, Томск

Валерия Евгеньевна Колосова

Российский университет медицины

Email: lera.kolosova.2001@mail.ru
ORCID iD: 0009-0009-7675-8153
Россия, Москва

Татьяна Игоревна Мещерякова

Ростовский государственный медицинский университет

Email: mesheryakova717@gmail.com
ORCID iD: 0009-0006-4546-6922
Россия, Ростов-на-Дону

Алексей Сергеевич Бакалдин

Оренбургский государственный медицинский университет

Email: barinl@bk.ru
ORCID iD: 0009-0009-7628-025X
Россия, Оренбург

Светлана Дмитриевна Лазарева

Российский национальный исследовательский медицинский университет им. Н.И. Пирогова

Email: sveta-laz01@mail.ru
ORCID iD: 0009-0007-8209-7430
Россия, Москва

Список литературы

  1. Thakur RR, Tekko IA, Al-Shammari F, et al. Rapidly dissolving polymeric microneedles for minimally invasive intraocular drug delivery. Drug Deliv Transl Res. 2016;6(6):800–815. doi: 10.1007/s13346-016-0332-9 EDN: EZULHS
  2. Gupta P, Yadav KS. Applications of microneedles in delivering drugs for various ocular diseases. Life Sci. 2019;237:116907. doi: 10.1016/j.lfs.2019.116907
  3. Lee K, Goudie MJ, Tebon P, et al. Non-transdermal microneedles for advanced drug delivery. Adv Drug Deliv Rev. 2020;165–166:41–59. doi: 10.1016/j.addr.2019.11.010 EDN: JECJNU
  4. Kurysheva N, Sharova G. Anatomical and topographical characteristics of the eye in the early stages of primary angle closure disease. National Journal Glaucoma. 2023;22(1):42–53. doi: 10.53432/2078-4104-2023-22-1-42-53 EDN: HUHDRQ
  5. Thakur Singh RR, Tekko I, McAvoy K, et al. Minimally invasive microneedles for ocular drug delivery. Expert Opin Drug Deliv. 2017;14(4):525–537. doi: 10.1080/17425247.2016.1218460
  6. Ivanova E, Alam NM, Prusky GT, Sagdullaev BT. Blood-retina barrier failure and vision loss in neuron-specific degeneration. JCI Insight. 2019;5(8):e126747. doi: 10.1172/jci.insight.126747
  7. Kuroyedov AV, Brzhesky VV, Krinitsyna EA. Traditional, unfairly forgotten, rarely used and promising drug delivery methods in ophthalmology: a clinical interpretation (part 1). Russian Ophthalmological Journal. 2019;12(2):83–95. doi: 10.21516/2072-0076-2019-12-2-83-95 EDN: JLJHCG
  8. Zhang X, Wang Y, Chi J, Zhao Y. Smart microneedles for therapy and diagnosis. Research (Wash D C). 2020;2020:7462915. doi: 10.34133/2020/7462915 EDN: VJNHPF
  9. Huang D, Chen YS, Rupenthal ID. Overcoming ocular drug delivery barriers through the use of physical forces. Adv Drug Deliv Rev. 2018;126:96–112. doi: 10.1016/j.addr.2017.09.008 EDN: YEMAPR
  10. Gorantla S, Rapalli VK, Waghule T, et al. Nanocarriers for ocular drug delivery: current status and translational opportunity. RSC Adv. 2020;10(46):27835–27855. doi: 10.1039/d0ra04971a EDN: ZZYYKR
  11. Bakhrushina EO, Anurova MN, Demina NB, et al. Ophthalmic drug delivery systems (review). Drug Dev Regist. 2021;10(1):57–66. doi: 10.33380/2305-2066-2021-10-1-57-66 EDN: JIHVJG
  12. Mandal A, Pal D, Agrahari V, et al. Ocular delivery of proteins and peptides: challenges and novel formulation approaches. Adv Drug Deliv Rev. 2018;126:67–95. doi: 10.1016/j.addr.2018.01.008
  13. Bachu RD, Chowdhury P, Al-Saedi ZHF, et al. Ocular drug delivery barriers — role of nanocarriers in the treatment of anterior segment ocular diseases. Pharmaceutics. 2018;10(1):28. doi: 10.3390/pharmaceutics10010028 EDN: VFBJZS
  14. Xu J, Xue Y, Hu G, et al. A comprehensive review on contact lens for ophthalmic drug delivery. J Control Release. 2018;281:97–118. doi: 10.1016/j.jconrel.2018.05.020
  15. Janagam DR, Wu L, Lowe TL. Nanoparticles for drug delivery to the anterior segment of the eye. Adv Drug Deliv Rev. 2017;122:31–64. doi: 10.1016/j.addr.2017.04.001
  16. Adelli GR, Balguri SP, Bhagav P, et al. Diclofenac sodium ion exchange resin complex loaded melt cast films for sustained release ocular delivery. Drug Deliv. 2017;24(1):370–379. doi: 10.1080/10717544.2016.1256000 EDN: YGEQVI
  17. Novack GD. Ophthalmic drug delivery: development and regulatory considerations. Clin Pharmacol Ther. 2009;85(5):539–543. doi: 10.1038/clpt.2008.297
  18. Choi SW, Kim J. Therapeutic contact lenses with polymeric vehicles for ocular drug delivery: a review. Materials (Basel). 2018;11(7):1125. doi: 10.3390/ma11071125
  19. Kang-Mieler JJ, Osswald CR, Mieler WF. Advances in ocular drug delivery: emphasis on the posterior segment. Expert Opin Drug Deliv. 2014;11(10):1647–1660. doi: 10.1517/17425247.2014.935338 EDN: UQOLIP
  20. Kaji H, Nagai N, Nishizawa M, Abe T. Drug delivery devices for retinal diseases. Adv Drug Deliv Rev. 2018;128:148–157. doi: 10.1016/j.addr.2017.07.002
  21. Smith SJ, Smith BD, Mohney BG. Ocular side effects following intravitreal injection therapy for retinoblastoma: a systematic review. Br J Ophthalmol. 2014;98(3):292–297. doi: 10.1136/bjophthalmol-2013-303885
  22. Maulvi FA, Soni TG, Shah DO. A review on therapeutic contact lenses for ocular drug delivery. Drug Deliv. 2016;23(8):3017–3026. doi: 10.3109/10717544.2016.1138342
  23. Morrison PW, Khutoryanskiy VV. Advances in ophthalmic drug delivery. Ther Deliv. 2014;5(12):1297–1315. doi: 10.4155/tde.14.75 EDN: YFCVEN
  24. Lee SJ, He W, Robinson SB, et al. Evaluation of clearance mechanisms with transscleral drug delivery. Invest Ophthalmol Vis Sci. 2010;51(10): 5205–5212. doi: 10.1167/iovs.10-5337
  25. Kurz D, Ciulla TA. Novel approaches for retinal drug delivery. Ophthalmol Clin North Am. 2002;15(3):405–410. doi: 10.1016/s0896-1549(02)00034-2
  26. Holgado MA, Anguiano-Domínguez A, Martín-Banderas L. Contact lenses as drug-delivery systems: a promising therapeutic tool. Arch Soc Esp Oftalmol (Engl Ed). 2020;95(1):24–33. doi: 10.1016/j.oftal.2019.07.009 EDN: TPCIWK
  27. Adelli GR, Balguri SP, Majumdar S. Effect of cyclodextrins on morphology and barrier characteristics of isolated rabbit corneas. AAPS PharmSciTech. 2015;16(5):1220–1226. doi: 10.1208/s12249-015-0315-z
  28. Patel A, Cholkar K, Agrahari V, Mitra AK. Ocular drug delivery systems: an overview. World J Pharmacol. 2013;2(2):47–64. doi: 10.5497/wjp.v2.i2.47
  29. Tuan-Mahmood TM, McCrudden MT, Torrisi BM, et al. Microneedles for intradermal and transdermal drug delivery. Eur J Pharm Sci. 2013;50(5): 623–637. doi: 10.1016/j.ejps.2013.05.005
  30. Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26(11):1261–1268. doi: 10.1038/nbt.1504
  31. Quinn HL, Kearney MC, Courtenay AJ, et al. The role of microneedles for drug and vaccine delivery. Expert Opin Drug Deliv. 2014;11(11):1769–1780. doi: 10.1517/17425247.2014.938635
  32. Lee KJ, Park SH, Lee JY, et al. Perivascular biodegradable microneedle cuff for reduction of neointima formation after vascular injury. J Control Release. 2014;192:174–181. doi: 10.1016/j.jconrel.2014.07.007
  33. Song HB, Lee KJ, Seo IH, et al. Impact insertion of transfer-molded microneedle for localized and minimally invasive ocular drug delivery. J Control Release. 2015;209:272–279. doi: 10.1016/j.jconrel.2015.04.041
  34. Panda A, Matadh VA, Suresh S, et al. Non-dermal applications of microneedle drug delivery systems. Drug Deliv Transl Res. 2022;12(1):67–78. doi: 10.1007/s13346-021-00922-9 EDN: OAGKYH
  35. Kang-Mieler JJ, Dosmar E, Liu W, Mieler WF. Extended ocular drug delivery systems for the anterior and posterior segments: biomaterial options and applications. Expert Opin Drug Deliv. 2017;14(5):611–620. doi: 10.1080/17425247.2016.1227785
  36. Amer M, Chen RK. Self-adhesive microneedles with interlocking features for sustained ocular drug delivery. Macromol Biosci. 2020;20(6):e2000089. doi: 10.1002/mabi.202000089 EDN: LLLTRJ
  37. Sharma A, Mohan K, Nirankari VS. Management of nontraumatic corneal perforation with tectonic drape patch and cyanoacrylate glue. Cornea. 2012;31(4):465–466. doi: 10.1097/ICO.0b013e31821de358
  38. Moffatt K, Wang Y, Raj Singh TR, Donnelly RF. Microneedles for enhanced transdermal and intraocular drug delivery. Curr Opin Pharmacol. 2017;36:14–21. doi: 10.1016/j.coph.2017.07.007
  39. Faizi HS, Nasiri MI, Wu Y, et al. Deferasirox nanosuspension loaded dissolving microneedles for ocular drug delivery. Int J Pharm. 2024;664:124614. doi: 10.1016/j.ijpharm.2024.124614 EDN: YOQAWZ
  40. Kim HM, Woo SJ. Ocular drug delivery to the retina: current innovations and future perspectives. Pharmaceutics. 2021;13(1):108. doi: 10.3390/pharmaceutics13010108 EDN: TGVFQN
  41. Ambekar R, Toussaint KC Jr, Wagoner Johnson A. The effect of keratoconus on the structural, mechanical, and optical properties of the cornea. J Mech Behav Biomed Mater. 2011;4(3):223–236. doi: 10.1016/j.jmbbm.2010.09.014
  42. Rzhevskiy AS, Singh TRR, Donnelly RF, Anissimov YG. Microneedles as the technique of drug delivery enhancement in diverse organs and tissues. J Control Release. 2018;270:184–202. doi: 10.1016/j.jconrel.2017.11.048 EDN: XXPMPZ
  43. Jiang J, Gill HS, Ghate D, et al. Coated microneedles for drug delivery to the eye. Invest Ophthalmol Vis Sci. 2007;48(9):4038–4043. doi: 10.1167/iovs.07-0066
  44. Bariya SH, Gohel MC, Mehta TA, Sharma OP. Microneedles: an emerging transdermal drug delivery system. J Pharm Pharmacol. 2012;64(1):11–29. doi: 10.1111/j.2042-7158.2011.01369.x
  45. Kim YC, Grossniklaus HE, Edelhauser HF, Prausnitz MR. Intrastromal delivery of bevacizumab using microneedles to treat corneal neovascularization. Invest Ophthalmol Vis Sci. 2014;55(11):7376–7386. doi: 10.1167/iovs.14-15257
  46. Than A, Liu C, Chang H, et al. Self-implantable double-layered micro-drug-reservoirs for efficient and controlled ocular drug delivery. Nat Commun. 2018;9(1):4433. doi: 10.1038/s41467-018-06981-w EDN: CBSGJL
  47. Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev. 2012;64(14):1547–1568. doi: 10.1016/j.addr.2012.04.005
  48. Edelhauser HF, Rowe-Rendleman CL, Robinson MR, et al. Ophthalmic drug delivery systems for the treatment of retinal diseases: basic research to clinical applications. Invest Ophthalmol Vis Sci. 2010;51(11):5403–5420. doi: 10.1167/iovs.10-5392
  49. Jiang J, Moore JS, Edelhauser HF, Prausnitz MR. Intrascleral drug delivery to the eye using hollow microneedles. Pharm Res. 2009;26(2):395–403. doi: 10.1007/s11095-008-9756-3 EDN: SUSEFU
  50. Patel SR, Lin AS, Edelhauser HF, Prausnitz MR. Suprachoroidal drug delivery to the back of the eye using hollow microneedles. Pharm Res. 2011;28(1):166–176. doi: 10.1007/s11095-010-0271-y EDN: OAIUSJ
  51. Lee CY, You YS, Lee SH, Jung H. Tower microneedle minimizes vitreal reflux in intravitreal injection. Biomed Microdevices. 2013;15(5):841–848. doi: 10.1007/s10544-013-9771-y
  52. Thakur RR, Fallows SJ, McMillan HL, et al. Microneedle-mediated intrascleral delivery of in situ forming thermoresponsive implants for sustained ocular drug delivery. J Pharm Pharmacol. 2014;66(4):584–595. doi: 10.1111/jphp.12152 EDN: SRMZMZ
  53. Gilger BC, Abarca EM, Salmon JH, Patel S. Treatment of acute posterior uveitis in a porcine model by injection of triamcinolone acetonide into the suprachoroidal space using microneedles. Invest Ophthalmol Vis Sci. 2013;54(4):2483–2492. doi: 10.1167/iovs.13-11747
  54. Kadonosono K, Yamane S, Arakawa A, et al. Endovascular cannulation with a microneedle for central retinal vein occlusion. JAMA Ophthalmol. 2013;131(6):783–786. doi: 10.1001/jamaophthalmol.2013.2585
  55. Kadonosono K, Arakawa A, Yamane S, et al. Displacement of submacular hemorrhages in age-related macular degeneration with subretinal tissue plasminogen activator and air. Ophthalmology. 2015;122(1):123–128. doi: 10.1016/j.ophtha.2014.07.027
  56. Yiu G, Chung SH, Mollhoff IN, et al. Suprachoroidal and subretinal injections of AAV using transscleral microneedles for retinal gene delivery in nonhuman primates. Mol Ther Methods Clin Dev. 2020;16:179–191. doi: 10.1016/j.omtm.2020.01.002 EDN: FLVHXG
  57. Gade SS, Pentlavalli S, Mishra D, et al. Injectable depot forming thermoresponsive hydrogel for sustained intrascleral delivery of sunitinib using hollow microneedles. J Ocul Pharmacol Ther. 2022;38(6):433–448. doi: 10.1089/jop.2022.0016
  58. Park JH, Allen MG, Prausnitz MR. Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery. J Control Release. 2005;104(1):51–66. doi: 10.1016/j.jconrel.2005.02.002 EDN: KIPZMT
  59. Wang QL, Zhu DD, Chen Y, Guo XD. A fabrication method of microneedle molds with controlled microstructures. Mater Sci Eng C Mater Biol Appl. 2016;65:135–142. doi: 10.1016/j.msec.2016.03.097
  60. Saraswathy K, Agarwal G, Srivastava A. Hyaluronic acid microneedles-laden collagen cryogel plugs for ocular drug delivery. J Appl Polym Sci. 2020;137(42):49285. doi: 10.1002/app.49285 EDN: BNXWKO
  61. Roy G, Galigama RD, Thorat VS, et al. Microneedle ocular patch: fabrication, characterization, and ex-vivo evaluation using pilocarpine as model drug. Drug Dev Ind Pharm. 2020;46(7):1114–1122. doi: 10.1080/03639045.2020.1776317 EDN: HMNUVO
  62. Wu Y, Vora LK, Wang Y, et al. Long-acting nanoparticle-loaded bilayer microneedles for protein delivery to the posterior segment of the eye. Eur J Pharm Biopharm. 2021;165:306–318. doi: 10.1016/j.ejpb.2021.05.022 EDN: IYBIOV
  63. Albadr AA, Tekko IA, Vora LK, et al. Rapidly dissolving microneedle patch of amphotericin B for intracorneal fungal infections. Drug Deliv Transl Res. 2022;12(4):931–943. doi: 10.1007/s13346-021-01032-2 EDN: JCOCRX
  64. Suriyaamporn P, Opanasopit P, Ngawhirunpat T, Rangsimawong W. Computer-aided rational design for optimally Gantrez® S-97 and hyaluronic acid-based dissolving microneedles as a potential ocular delivery system. J Drug Deliv Sci Technol. 2021;61:102319. doi: 10.1016/j.jddst.2020.102319 EDN: WSIBOO
  65. Suriyaamporn P, Opanasopit P, Rangsimawong W, Ngawhirunpat T. Optimal design of novel microemulsions-based two-layered dissolving microneedles for delivering fluconazole in treatment of fungal eye infection. Pharmaceutics. 2022;14(3):472. doi: 10.3390/pharmaceutics14030472 EDN: SMPMIO
  66. Amer M, Ni X, Xian M, Chen RK. Photo-responsive hydrogel microneedles with interlocking control for easy extraction in sustained ocular drug delivery. J Eng Sci Med Diagnostics Ther. 2022;5(1):011001. doi: 10.1115/1.4052627 EDN: SIXHTQ
  67. Wu Y, Vora LK, Donnelly RF, Singh TRR. Rapidly dissolving bilayer microneedles enabling minimally invasive and efficient protein delivery to the posterior segment of the eye. Drug Deliv Transl Res. 2023;13(8):2142–2158. doi: 10.1007/s13346-022-01190-x EDN: MNBGVZ
  68. Ita K. Transdermal delivery of drugs with microneedles-potential and challenges. Pharmaceutics. 2015;7(3):90–105. doi: 10.3390/pharmaceutics7030090
  69. Lee CY, Ma Y, You YS, et al. Intravitreal injection of anti-vascular endothelial growth factor (anti-VEGF) antibody via Tower Microneedle. Biochip J. 2015;9(3):232–238. doi: 10.1007/s13206-015-9305-9
  70. Cheung K, Das DB. Microneedles for drug delivery: trends and progress. Drug Deliv. 2016;23(7):2338–2354. doi: 10.3109/10717544.2014.986309
  71. Park JH, Allen MG, Prausnitz MR. Polymer microneedles for controlled-release drug delivery. Pharm Res. 2006;23(5):1008–1019. doi: 10.1007/s11095-006-0028-9 EDN: TBWERZ
  72. Tay JH, Lim YH, Zheng M, et al. Development of hyaluronic acid-silica composites via in situ precipitation for improved penetration efficiency in fast-dissolving microneedle systems. Acta Biomater. 2023;172:175–187. doi: 10.1016/j.actbio.2023.10.016 EDN: IMWJYQ
  73. Tucak A, Sirbubalo M, Hindija L, et al. Microneedles: Characteristics, materials, production methods and commercial development. Micromachines (Basel). 2020;11(11):961. doi: 10.3390/mi11110961 EDN: XWQPRE
  74. Gill HS, Prausnitz MR. Coated microneedles for transdermal delivery. J Control Release. 2007;117(2):227–237. doi: 10.1016/j.jconrel.2006.10.017 EDN: KIRDGF
  75. Albarahmieh E, AbuAmmouneh L, Kaddoura Z, et al. Fabrication of dissolvable microneedle patches using an innovative laser-cut mould design to shortlist potentially transungual delivery systems: In vitro evaluation. AAPS PharmSciTech. 2019;20(5):215. doi: 10.1208/s12249-019-1429-5 EDN: XSQGHS
  76. Norman JJ, Choi SO, Tong NT, et al. Hollow microneedles for intradermal injection fabricated by sacrificial micromolding and selective electrodeposition. Biomed Microdevices. 2013;15(2):203–210. doi: 10.1007/s10544-012-9717-9 EDN: IXWLAE
  77. McCrudden MT, Alkilani AZ, McCrudden CM, et al. Design and physicochemical characterisation of novel dissolving polymeric microneedle arrays for transdermal delivery of high dose, low molecular weight drugs. J Control Release. 2014;180(100):71–80. doi: 10.1016/j.jconrel.2014.02.007
  78. Kim JD, Kim M, Yang H, et al. Droplet-born air blowing: Novel dissolving microneedle fabrication. J Control Release. 2013;170(3):430–436. doi: 10.1016/j.jconrel.2013.05.026
  79. Martanto W, Moore JS, Kashlan O, et al. Microinfusion using hollow microneedles. Pharm Res. 2006;23(1):104–113. doi: 10.1007/s11095-005-8498-8 EDN: JAPIYE
  80. Mahadevan G, Sheardown H, Selvaganapathy P. PDMS embedded microneedles as a controlled release system for the eye. J Biomater Appl. 2013;28(1):20–27. doi: 10.1177/0885328211433778
  81. Caudill CL, Perry JL, Tian S, et al. Spatially controlled coating of continuous liquid interface production microneedles for transdermal protein delivery. J Control Release. 2018;284:122–132. doi: 10.1016/j.jconrel.2018.05.042
  82. Lim DJ, Vines JB, Park H, Lee SH. Microneedles: A versatile strategy for transdermal delivery of biological molecules. Int J Biol Macromol. 2018;110:30–38. doi: 10.1016/j.ijbiomac.2017.12.027
  83. Ingrole RSJ, Gill HS. Microneedle coating methods: A review with a perspective. J Pharmacol Exp Ther. 2019;370(3):555–569. doi: 10.1124/jpet.119.258707 EDN: TZYTYA
  84. Zielińska A, Soles BB, Lopes AR, et al. Nanopharmaceuticals for eye administration: Sterilization, depyrogenation and clinical applications. Biology (Basel). 2020;9(10):336. doi: 10.3390/biology9100336 EDN: IOGINE
  85. Swathi HP, Anusha Matadh V, Paul Guin J, et al. Effect of gamma sterilization on the properties of microneedle array transdermal patch system. Drug Dev Ind Pharm. 2020;46(4):606–620. doi: 10.1080/03639045.2020.1742144 EDN: DJDUAW
  86. Glover K, Mishra D, Gade S, et al. Microneedles for advanced ocular drug delivery. Adv Drug Deliv Rev. 2023;201:115082. doi: 10.1016/j.addr.2023.115082 EDN: OGUGXJ
  87. Park JH, Allen MG, Prausnitz MR. Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery. Conf Proc IEEE Eng Med Biol Soc. 2004;2004:2654–2657. doi: 10.1109/IEMBS.2004.1403761
  88. Machekposhti SA, Soltani M, Najafizadeh P, et al. Biocompatible polymer microneedle for topical/dermal delivery of tranexamic acid. J Control Release. 2017;261:87–92. doi: 10.1016/j.jconrel.2017.06.016
  89. Donnelly RF, Majithiya R, Singh TR, et al. Design, optimization and characterisation of polymeric microneedle arrays prepared by a novel laser-based micromoulding technique. Pharm Res. 2011;28(1):41–57. doi: 10.1007/s11095-010-0169-8 EDN: OAIUTN
  90. Loizidou EZ, Inoue NT, Ashton-Barnett J, et al. Evaluation of geometrical effects of microneedles on skin penetration by CT scan and finite element analysis. Eur J Pharm Biopharm. 2016;107:1–6. doi: 10.1016/j.ejpb.2016.06.023
  91. Xenikakis I, Tsongas K, Tzimtzimis EK, et al. Fabrication of hollow microneedles using liquid crystal display (LCD) vat polymerization 3D printing technology for transdermal macromolecular delivery. Int J Pharm. 2021;597:120303. doi: 10.1016/j.ijpharm.2021.120303 EDN: MLDRXX
  92. Sabri AH, Kim Y, Marlow M, et al. Intradermal and transdermal drug delivery using microneedles — Fabrication, performance evaluation and application to lymphatic delivery. Adv Drug Deliv Rev. 2020;153:195–215. doi: 10.1016/j.addr.2019.10.004 EDN: JVAWSH
  93. Kusamori K, Katsumi H, Sakai R, et al. Development of a drug-coated microneedle array and its application for transdermal delivery of interferon alpha. Biofabrication. 2016;8(1):015006. doi: 10.1088/1758-5090/8/1/015006
  94. Gupta J, Gupta R, Vanshita. Microneedle technology: An insight into recent advancements and future trends in drug and vaccine delivery. Assay Drug Dev Technol. 2021;19(2):97–114. doi: 10.1089/adt.2020.1022 EDN: FHXDAU
  95. Cao Y, Tao Y, Zhou Y, Gui S. Development of sinomenine hydrochloride-loaded polyvinylalcohol/maltose microneedle for transdermal delivery. J Drug Deliv Sci Technol. 2016;35:1–7. doi: 10.1016/j.jddst.2016.06.007
  96. Flaten GE, Palac Z, Engesland A, et al. In vitro skin models as a tool in optimization of drug formulation. Eur J Pharm Sci. 2015;75:10–24. doi: 10.1016/j.ejps.2015.02.018
  97. Mohammed AA, Ali MM, Zenebe MH. Bacterial etiology of ocular and periocular infections, antimicrobial susceptibility profile and associated factors among patients attending eye unit of Shashemene Comprehensive Specialized Hospital, Shashemene, Ethiopia. BMC Ophthalmol. 2020;20(1):124. doi: 10.1186/s12886-020-01398-w EDN: LRTBQA
  98. Novack GD, Robin AL. Ocular pharmacology. J Clin Pharmacol. 2024;64(9):1068–1082. doi: 10.1002/jcph.2451 EDN: BMLNJC
  99. Chang JN. CHAPTER7 — Recent advances in ophthalmic drug delivery. In: Drug Delivery Systems. 2010. P. 165–192. doi: 10.1016/b978-0-8155-2025-2.10007-1
  100. Gote V, Ansong M, Pal D. Prodrugs and nanomicelles to overcome ocular barriers for drug penetration. Expert Opin Drug Metab Toxicol. 2020;16(10):885–906. doi: 10.1080/17425255.2020.1803278 EDN: ZHLIYF
  101. Wang WJ, Snider N. Discovery and potential utility of a novel non-invasive ocular delivery platform. Pharmaceutics. 2023;15(9):2344. doi: 10.3390/pharmaceutics15092344 EDN: ZPBSJS

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Эко-Вектор, 2025


 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».