The role of retroelements of the human genome in the development of type 1 diabetes mellitus

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Retroelements (retrotransposons and endogenous retroviruses) are a class of mobile genetic elements that move in the genome by inserting their own reverse transcribed transcripts. They serve as drivers of epigenetic regulation; therefore, individual characteristics of the distribution of retroelements in the genome influence the development of multifactorial diseases. Type 1 diabetes mellitus is a multifactorial disease with an immune response against pancreatic β cells. The role of heredity in the development of the disease is estimated at 88%, and the role of allelic variants of various genes is determined. There are also other specific types of diabetes mellitus, which account for more than 2% of cases of diabetes mellitus and are monogenic diseases with an autosomal dominant mode of inheritance due to germline mutations in the MODY genes, including HNF4A, GCK, HNF1A, HNF1B. Most patients with type 1 diabetes have the protein product and ribonucleic acid (RNA) of the insulin inhibitor HERV-W-Env, which is caused by abnormal expression of the human endogenous retrovirus (HERV). An assumption has been made about the role of retroelements in the development of type 1 diabetes mellitus. This is due to their involvement in the phylogenetic formation of the endocrine system, since in evolution retroelements turned out to be sources of regulatory sequences of hormone genes, nuclear hormone receptors and binding sites for them. Type 1 diabetes mellitus is associated with the integration of HERV into the HLA-DQ gene region, with allelic variants and sizes of VNTR variable tandem repeats (part of the SVA retroelements), which regulate the expression of the insulin gene and other hormones. For this reason, it is likely that the development of type 1 diabetes mellitus may be based on individual characteristics of the distribution of HERVs in the human genome and their dynamic changes in ontogenesis. HERVs also play a role in the etiopathogenesis of diabetes mellitus through the activation of an autoimmune response, the triggering factors of which are exogenous viral infections and stress. Thus, retroelements are involved in various mechanisms of the development of type 1 diabetes mellitus, which reflects their global regulatory influence on endocrine regulation.

About the authors

Rustam N. Mustafin

Bashkir State Medical University

Author for correspondence.
Email: ruji79@mail.ru
ORCID iD: 0000-0002-4091-382X
SPIN-code: 4810-2535
Scopus Author ID: 56603137500
ResearcherId: S-2194-2018

Cand. Sci. (Biol.), Assoc. Prof., Depart. of Medical Genetics and Fundamental Medicine

Russian Federation, Ufa

References

  1. Levet S, Charvet B, Bertin A, Deschaumes A, Perron H, Hober D. Human endogenous retroviruses and type 1 diabetes. Curr Diab Rep. 2019;19(12):141. doi: 10.1007/s11892-019-1256-9
  2. Gianfrancesco O, Bubb VJ, Quinn JP. SVA retrotransposons as potential modulators of neuropeptide gene expression. Neuropeptides. 2017;64:3–7. doi: 10.1016/j.npep.2016.09.006
  3. Mustafin RN, Khusnutdinova EK. Non-coding parts of genomes as the basis of epigenetic heredity. Vavilov Journal of Genetics and Breeding. 2017;21(6):742–749. (In Russ). doi: 10.18699/VJ17.30-o
  4. Mustafin RN, Khusnutdinova EK. The role of transposons in epigenetic regulation of ontogenesis. Russian Journal of Developmental Biology. 2018;8(3):200–209. doi: 10.1134/S1062360418020066
  5. Mustafin RN, Khusnutdinova EK. The role of transposable elements in endocrine changes during aging. Adv Geront. 2020;33(3):418–428. (In Russ.) doi: 10.34922/AE.2020.33.3.001
  6. Hoffmann A, Zimmermann CA, Spengler D. Molecular epigenetic switches in neurodevelopment in health and disease. Front Behav Neurosci. 2015;9:120. doi: 10.3389/fnbeh.2015.00120
  7. Klein SJ, O’Neill RJ. Transposable elements: Genome innovation, chromosome diversity, and centromere conflict. Chromosome Res. 2018;26:5–23. doi: 10.1007/s10577-017-9569-5
  8. Mason MJ, Speake C, Gersuk VH, Nguyen QA, O'Brien KK, Odegard JM, Buckner JH, Greenbaum CJ, Chaussabel D, Nepom GT. Low HERV-K(C4) copy number is associated with type 1 diabetes. Diabetes. 2014;63(5):1789–95. doi: 10.2337/db13-1382
  9. Zayed H. Genetic epidemiology of type 1 diabetes in the 22 Arab countries. Curr Diab Rep. 2016;16:37. doi: 10.1007/s11892-016-0736-4
  10. Dedov II, Shestakova MV, Vikulova OK, Zheleznyakova AV, Isakov MA, Sazonova DV, Mokryseva NG. Diabetes mellitus in the Russian Federation: dynamics of epidemiological indicators according to the Federal Register of diabetes mellitus for the period 2010–2022. Diabetes Mellitus. 2023;26(2):104–123. (In Russ.) doi: 10.14341/DM13035
  11. Tovo PA, Rabbone I, Tinti D, Galliano I, Trada M, Dapra V, Cerutti F, Bergallo M. Enhanced expression of human endogenous retroviruses in new-onset type 1 diabetes: Potential pathogenetic and therapeutic implications. Autoimmunity. 2020;53:283–288. doi: 10.1080/08916934.2020.1777281
  12. Zhang N, Huang W, Dong F, Liu Y, Zhang B, Jing L, Wang M, Yang G, Jing C. Insulin gene VNTR polymorphisms –2221MspI and –23HphI are associated with type 1 diabetes and latent autoimmune diabetes in adults: A meta-analysis. Acta Diabetol. 2015;52:1143–1155. doi: 10.1007/s00592-015-0805-1
  13. Redondo MJ, Steck AK, Pugliese A. Genetics of type 1 diabetes. Pediatr Diabetes. 2018;19:346–353. doi: 10.1111/pedi.12597
  14. Mustafin RN. The role of transposons in the structural evolution of eukaryotic genomes. Genes and Cells. 2021;16(2):23–30. (In Russ.) doi: 10.23868/202107001
  15. Mariaselvam CM, Seth G, Kavadichanda C, Boukouaci W, Wu CL, Costes B, Thabah MM, Krishnamoorthy R, Leboyer M, Negi VS, Tamouza R. Low C4A copy numbers and higher HERV gene insertion contributes to increased risk of SLE, with absence of association with disease phenotype and disease activity. Immunol Res. 2024. doi: 10.1007/s12026-024-09475-8
  16. Mustafin RN. Involvement of transposons in epigenetic regulation of embryogenesis. Genes and Cells. 2021;16(1):10–14. (In Russ.) doi: 10.23868/202104001
  17. Johnson SR, Ellis JJ, Leo PJ, Anderson LK, Ganti U, Harris JE, Curran JA, Mclnerney-Leo AM, Paramalingam N, Song X, Conwell LS, Harris M, Jones TW, Brown MA, Davis EA, Duncan EL. Comprehensive genetic screening: The prevalence of maturity-onset diabetes of the young gene variants in a population-based childhood diabetes cohort. Pediatr Diabetes. 2019;20:57–64. doi: 10.1111/pedi.12766
  18. Johnson SR, McGown I, Oppermann U, Conwell LS, Harris M, Duncan EL. A novel INS mutation in a family with maturity-onset diabetes of the young: Variable insulin secretion and putative mechanisms. Pediatr Diabetes. 2018;19:905–909. doi: 10.1111/pedi:12679
  19. Polychronakos C, Li Q. Understanding type 1 diabetes through genetics: Advances and prospects. Nature Rev Genet. 2011;12:781–192. doi: 10.1038/nrg3069
  20. Redondo MJ, Onengut-Gumuscu S, Gaulton KJ. Genetics of type 1 diabetes. In: Diabetes in America. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), 2023. PMID: 38117927
  21. Žak R, Navasardyan L, Hunák J, Martinů J, Heneberg P. PTPN22 intron polymorphism rs1310182 (c.2054-852T>C) is associated with type 1 diabetes mellitus in patients of Armenian descent. PLoS One. 2023;18(6):e0286743. doi: 10.1371/journal.pone.0286743
  22. Noble JA, Besancon S, Sidibe AT, Rozemuller EH, Rijkers M, Dadkhodaie F, de Bruin H, Kooij J, Martin HRN, Ogle GD, Steven JM. Complete HLA genotyping of type 1 diabetes patients and controls from Mali reveals both expected and novel disease associations. HLA. 2024;103(1):e15319. doi: 10.1111/tan.15319
  23. Chuong EB. The placenta goes viral: Retroviruses control gene expression in pregnancy. PLoS Biol. 2018;16(10):e3000028. doi: 10.1371/journal.pbio.3000028
  24. Štangar A, Kovač J, Šket R, Tesovnik T, Zajec A, Čugalj Kern B, Jenko Bizjan B, Battelino T, Dovč K. Contribution of retrotransposons to the pathogenesis of type 1 diabetes and challenges in analysis methods. Int J Mol Sci. 2023;24(4):3104. doi: 10.3390/ijms24043104
  25. Mestrovic N, Mravinac B, Pavlek M, Vojvoda-Zelijko T, Satovic E, Plohl M. Structural and functional liaisons between transposable elements and satellite DNAs. Chromosome Res. 2015;23:583–596. doi: 10.1007/s10577-015-9483-7
  26. Carone DM, Zhang C, Hall LE, Obergfell C, Carone BR, O’Neill MJ, O’Neill RJ. Hypermorphic expression of centromeric retroelement-encoded small RNAs impairs CENP-A loading. Chromosome Res. 2013;21(1):49–62. doi: 10.1007/s10577-013-9337-0
  27. Yadav V, Sun S, Billmyre RB, Thimmappa BC, Shea T, Lintner R, Bakkeren G, Cuomo CA, Heitman J, Sanyan K. RNAi is a critical determinant of centromere evolution in closely related fungi. PNAS USA. 2018;115:3108–3113. doi: 10.1073/pnas.1713725115
  28. Hayashi S, Honda Y, Kanesaki E, Koga A. Marsupial satellite DNA as faithful reflections of long-terminal repeat retroelement structure. Genome. 2022;65(9):469–478. doi: 10.1139/gen-2022-0039
  29. Zattera ML, Bruschi DP. Transposable elements as a source of novel repetitive DNA in the eukaryote geneome. Cells. 2022;11(21):3373. doi: 10.3390/cells11213373
  30. Heikkinen E, Launonen V, Muller E, Bachmann L. The pvB370 BamHI satellite DNA family of the Drosophila virilis group and its evolutionary relation to mobile dispersed genetic pDv elements. J Mol Evol. 1995;41:604–614. doi: 10.1007/BF00175819
  31. Chen H, Chen L, Wu Y, Shen H, Yang G, Deng C. The exonization and functionalization of an Alu-J element in the protein coding region of glycoprotein hormone alpha gene represent a novel mechanism to the evolution of hemochorial placentation in primates. Mol Biol Evol. 2017;34(12):3216–3231. doi: 10.1093/molbev/msx252
  32. Annibalini G, Bielli P, De Santi M, Agostini D, Guescini M, Sisti D, Contarelli S, Brandi G, Villarini A, Stocchi V, Sette C, Barbieri E. MIR retroposon exonization promotes evolutionary variability and generates species-specific expression of IGF-1 splice variants. Biochim Biophys Acta. 2016;1859:757–768. doi: 10.1016/j.bbagrm.2016.03.014
  33. Zeberg H, Kelso J, Paabo S. The neandertal progesterone receptor. Mol Biol Evol. 2020;37(9):2655–2660. doi: 10.1093/molbev/msaa119
  34. Mir R, Altayar MA, Hamadi A, Tayeb FJ, Saeedi NH, Jalal MM, Barnawi J, Alshammari S, Mtiraoui N, Ali MEM, Abuduhier FM, Ullah MF. Molecular determination of progesterone receptor's PROGINS allele (Alu insertion) and its association with the predisposition and susceptibility to polycystic ovary syndrome (PCOS). Mamm Genome. 2022;33(3):508–516. doi: 10.1007/s00335-021-09941-w
  35. Lapp HE, Hunter RG. The dynamic genome: transposons and environmental adaptation in the nervous system. Epigenomics. 2016;8:237–239. doi: 10.2217/epi.15.107
  36. Hunter RG, Gagnidze K, McEwen BS, Pfaff DW. Stress and the dynamic genome: Steroids, epigenetics, and the transposome. PNAS USA. 2014;112:6828–6833. doi: 10.1073/pnas.1411260111
  37. Bergallo M, Galliano I, Montanari P, Gambarino S, Mareschi K, Ferro F, Fagioli F, Tovo PA, Ravanini P. CMV induces HERV-K and HERV-W expression in kidney transplant recipients. J Clin Virol. 2015;68:28–31. doi: 10.1016/j.jcv.2015.04.018
  38. Wieland L, Schwarz T, Engel K, Volkmer I, Krüger A, Tarabuko A, Junghans J, Kornhuber ME, Hoffmann F, Staege MS, Emmer A. Epstein–Barr virus-induced genes and endogenous retroviruses in immortalized b cells from patients with multiple sclerosis. Cells. 2022;11(22):3619. doi: 10.3390/cells11223619
  39. Bian X, Wallstrom G, Davis A, Wang J, Park J, Throop A, Steel J, Yu X, Wasserfall C, Schatz D, Atkinson M, Qiu J, LaBaer J. Immunoproteomic profiling of antiviral antibodies in new-onset type 1 diabetes using protein arrays. Diabetes. 2016;65:285–296. doi: 10.2337/db15-0179
  40. Richardson SJ, Leete P, Bone AJ, Foulis AK, Morgan NG. Expression of the enteroviral capsid protein VP1 in the islet cells of patients with type 1 diabetes is associated with induction of protein kinase R and downregulation of Mcl-1. Diabetologia. 2013;56:185–193. doi: 10.1007/s00125-012-2745-4
  41. Krogvold L, Edwin B, Buanes T, Frisk G, Skog O, Anagandula M, Korsgren O, Undlien D, Eike MC, Richardson SJ, Leete P, Morgan NG, Oikarinen S, Oikarinen M, Laiho JE, Hyoty H, Ludvigsson J, Hanssen KF, Dahl-Jorgensen K. Detection of a low-grade enteroviral infection in the islets of langerhans of living patients newly diagnosed with type 1 diabetes. Diabetes. 2015;64:1682–1687. doi: 10.2337/db14-1370
  42. Levet S, Medina J, Joanou J, Demolder A, Queruel N, Reant K, Normand M, Seffals M, Dimier J, Germi R, Piofczyk T, Portoukalian J, Touraine JL, Perron H. An ancestral retroviral protein identified as a therapeutic target in type-1 diabetes. JCI Insight. 2017;2:e94387. doi: 10.1172/jci.insight.94387
  43. Curtin F, Bernard C, Levet S, Perron H, Porchet H, Medina J, Malpass S, Lloyd D, Simpson R; RAINBOW-T1D investigators. A new therapeutic approach for type 1 diabetes: Rationale for GNbAC1, an anti-HERV-W-Env monoclonal antibody. Diabetes Obes Metab. 2018;20:2075–2084. doi: 10.1111/dom.13357
  44. Bashratyan R, Regn D, Rahman MJ, Marquardt K, Fink E, Hu WY, Elder JH, Binley J, Sherman LA, Dai YD. Type 1 diabetes pathogenesis is modulated by spontaneous autoimmune responses to endogenous retrovirus antigens in NOD mice. Eur J Immunol. 2017;47(3):575–584. doi: 10.1002/eji.201646755
  45. Niegowska M, Wajda-Cuszlag M, Stepien-Ptak G, Trojanek J, Michalkiewicz J, Szalecki M, Sechi LA. Anti-HERV-W Env antibodies are correlated with seroreactivity against Mycobacterium avium subsp. Paratuberculosis in children and youths at T1D risk. Sci Rep. 2019;9:6282. doi: 10.1038/s41598-019-42788-5
  46. Mustafin RN. Prospects for the study of transposons in the pathogenesis of autoimmune diseases. Kazan Medical Journal. 2022;103(6):986–995. (In Russ.) doi: 10.17816/KMJ104291
  47. Dai YD, Dias P, Margosiak A, Marquardt K, Bashratyan R, Hu WY, Haskins K, Evans LH. Endogenous retrovirus Gag antigen and its gene variants are unique autoantigens expressed in the pancreatic islets of non-obese diabetic mice. Immunol Lett. 2020;223:62–70. doi: 10.1016/j.imlet.2020.04.007
  48. Pastuzyn ED, Day CE, Kearns RB, Kyrke-Smith M, Taibi AV, McCormick J, Yoder N, Belnap DM, Erlendsson S, Morado DR, Briggs JAG, Feschotte C, Shepherd JD. The neuronal gene arc encodes a repurposed retrotransposon Gag protein that mediates intercellular RNA transfer. Cell. 2018;172:275–288. doi: 10.1016/j.cell.2017.12.024
  49. Mustafin RN, Khusnutdinova EK. Perspecitve for studing the relationship of miRNAs with transposable elements. Curr Issues Mol Biol. 2023;45(4):3122–3145.
  50. Lakhter AJ, Pratt RE, Moore RE, Doucette KK, Maier BF, DiMeglio LA, Sims EK. Beta cell extracellular vesicle miR-21-5p cargo is increased in response to inflammatory cytokines and serves as a biomarker of type 1 diabetes. Diabetologia. 2018;61:1124–1134. doi: 10.1007/s00125-018-4559-5
  51. Nabih ES, Andrawes NG. The association between circulating levels of miRNA-181a and pancreatic beta cells dysfunction via SMAD7 in type 1 diabetic children and adolescents. J Clin Lab Anal. 2016;30:727–731. doi: 10.1002/jcla.21928
  52. Margaritis K, Margioula-Siarkou G, Margioula-Siarkou C, Petousis S, Kotanidou EP, Christoforidis A, Pavlou E, Galli-Tsinopoulou A. Circulating serum and plasma levels of micro-RNA in type-1 diabetes in children and adolescents: A systematic review and meta-analysis. Eur J Clin Invest. 2021;51(7):e13510. doi: 10.1111/eci.13510
  53. Yang M, Ye L, Wang B, Gao J, Liu R, Hong J, Wang W, Gu W, Ning G. Decreased miR-146 expression in peripheral blood mononuclear cells is correlated with ongoing islet autoimmunity in type 1 diabetes patients 1miR-146. J Diabetes. 2015;7:158–165.
  54. Zhang Y, Feng ZP, Naselli G, Bell F, Wettenhall J, Auyeung P, Ellis JA, Ponsonby AL, Speed TP, Chong MMW, Harrison LC. MicroRNAs in CD4(+) T cell subsets are markers of disease risk and T cell dysfunction in individuals at risk for type 1 diabetes. J Autoimmun. 2016;68:52–61. doi: 10.1016/j.jaut.2015.12006
  55. De Jong VM, van der Slik AR, Laban S, van’t Slot R, Koeleman BPC, Zaldumbide A, Roep BO. Survival of autoreactive T lymphocytes by microRNA-mediated regulation of apoptosis through TRAIL and Fas in type 1 diabetes. Genes Immun. 2016;17:342–348.
  56. Shen Z, Yu Y, Yang Y, Xiao X, Sun T, Chang X, Tang W, Zhu Y, Han X. miR-25 and miR-92b regulate insulin biosynthesis and pancreatic β-cell apoptosis. Endocrine. 2022;76(3):526–535. doi: 10.1007/s12020-022-03016-9
  57. Sedgeman LR, Beysen C, Solano MAR, Michell DL, Sheng Q, Zhao S, Turner S, Linton MRF, Vickers KC. Beta cell secretion of miR-375 to HDL is inversely associated with insulin secretion. Sci Rep. 2019;9(1):3803. doi: 10.1038/s41598-019-40338-7
  58. Wei G, Qin S, Li W, Chen L, Ma F. MDTE DB: A database for microRNAs derived from transposable element. IEEE/ACM Trans Comput Biol Bioinform. 2016;13:1155–1160.
  59. Tesovnik T, Kovač J, Pohar K, Hudoklin S, Dovc K, Bratina N, Podkrajsek KT, Debeljak M, Veranic P, Bosi E, Piemonti L, Ihan A, Bttelino T. Extracellular vesicles derived human-miRNAs modulate the immune system in type 1 diabetes. Front Cell Dev Biol. 2020;8:202. doi: 10.3389/fcell.2020.00202
  60. Morales-Sanchez P, Lambert C, Ares-Blanco J, Suarez-Gutierrez L, Villa-Fernandez E, Garcia AV, Garcia-Villarino M, Tejedor JR, Fraga MF, Torre EM, Pujante P, Delgado E. Circulating miRNA expression in long-standing type 1 diabetes mellitus. Sci Rep. 2023;13:8611. doi: 10.1038/s41598-023-35836-8
  61. Han Q, Zhang Y, Jiao T, Li Q, Ding X, Zhang D, Cai G, Zhu H. Urinary sediment microRNAs can be used as potential noninvasive biomarkers for diagnosis, reflecting the severity and prognosis of diabetic nephropathy. Nutr Diabetes. 2021;11(1):24. doi: 10.1038/s41387-021-00166-z
  62. Liu L, Yan J, Xu H, Zhu Y, Liang H, Pan W, Yao B, Han X, Ye J, Weng J. Two novel microRNA biomarkers related to beta-cell damage and their potential values for early diagnosis of type 1 diabetes. J Clin Endocrinol Metab. 2018;103(4):1320–1329. doi: 10.1210/jc.2017-01417
  63. Takahashi P, Xavier D, Evangelista AF, Manoel-Caetano FS, Macedo C, Collares CVA, Foss-Freitas MC, Foss MC, Rassi DM, Donadi EA, Passos GA, Sakamoto-Hojo ET. MicroRNA expression profiling and functional annotation analysis of their targets in patients with type 1 diabetes mellitus. Gene. 2014;539:213–223. doi: 10.1016/j.gene.2014.01.075
  64. Ferraz RS, Santos LCB, da-Silva-Cruz RL, Braga-da-Silva CH, Magalhaes L, Ribeiro-Dos-Santos A, Vidal A, Vinasco-Sandoval T, Reis-das-Merces L, de Queiroz NNM, Felicio KM, Vavalcante GC, Ribeiro-Dos-Santos A, Felicio JS. Global miRNA expression reveals novel nuclear and mitochondrial interactions in type 1 diabetes mellitus. Front Endocrinol (Lausanne). 2022;13:1033809. doi: 10.3389/fendo.2022.1033809
  65. Bacon S, Engelbrecht B, Schmid J, Pfeiffer S, Gallagher R, McCarthy A, Burke M, Concannon C, Prehn JHM, Byrne MM. MicroRNA-224 is readily detectable in urine of individuals with diabetes mellitus and is a potential indicator of beta-cell demise. Genes. 2015;6:399–416. doi: 10.3390/genes6020399
  66. Azhir Z, Dehghanian F, Hojati Z. Increased expression of microRNAs, miR-20a and miR-326 in PBMCs of patients with type 1 diabetes. Mol Biol Rep. 2018;45(6):1973–1980. doi: 10.1007/s11033-018-4352-z
  67. Ghaffari M, Razi S, Zalpoor H, Nabi-Afjadi M, Mohebichamkhorami F, Zali H. Association of microRNA-146a with type 1 and 2 diabetes and their related complivations. J Diabetes Res. 2023;2023:2587104. doi: 10.1155/2023/2587104
  68. Curtin F, Champion B, Davoren P, Duke S, Ekinci E, Gilfillan C, Morbey C, Nathow T, O’Moore-Sullivan T, O’Neal D, Robets A, Stanks S, Stuckey B, Vora P, Malpass S, Lloyd D, Maestracci-Beard N, Buffet B, Kornmann G, Bernard C, Prchet H, Simpson R. A safety and pharmacodynamics study of temelimab, and antipathogenic human endogenous retrovirus type W envelope monoclonal antibody, in patients with type 1 diabetes. Diabetes Obes Metab. 2020;22:1111–1121. doi: 10.1111/dom.14010

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The role of retroelements in the formation of the endocrine system in evolution

Download (41KB)
3. Fig. 2. Scheme of the influence of retroelements on the genes leukocyte antigens of the major human histocompatibility complex (HLA) in the pathogenesis of type 1 diabetes mellitus

Download (26KB)
4. Fig. 3. Mechanisms of participation of retroelements in autoimmune processes in type 1 diabetes mellitus; HLA — human leukocyte antigens of the major histocompatibility complex

Download (63KB)

© 2024 Eco-Vector

Creative Commons License

This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies