Health risks of air pollution with fine particulate matter

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The review presents up-to-date information on the health effects of ambient fine particulate matter, obtained in large cohort epidemiological studies, as well as in meta-analysis of pooled data. In addition, it summarizes the current data on the potential pathological mechanisms and existing monitoring systems. The literature search used the Scopus, PubMed, Russian Science Citation Index databases for 1990–2020. The results of epidemiological studies carried out in different countries indicate that fine particles in ambient air pose a serious threat to health. Scientific publications assessing the health impact of particulate matter show a wide range of adverse effects — from the increasing incidence of upper and lower respiratory tract diseases, including exacerbations of bronchial asthma, pneumonia, chronic obstructive pulmonary disease, to a high incidence of myocardial infarction, strokes, diabetes mellitus type 2, as well as an increase in overall mortality from natural causes, mainly mortality from respiratory diseases, cardiovascular and cerebrovascular diseases, lung cancer. The effects of short-term exposures are described in more detail, while the effects of long-term exposure to fine particles are not well understood. Potential mechanisms of the harmful effects of fine particulate matter include oxidative stress, inflammatory reactions, disorders of autonomic regulation and heart rhythm, fine particles translocation through the alveolar barrier into the vascular bed with endothelial damage and thrombus formation, and genotoxicity. Ambient fine particulate matter is a manageable risk factor, and reductions in air pollution will have a significant impact on public health outcomes.

About the authors

L M Fatkhutdinova

Kazan State Medical University

Author for correspondence.
Email: liliya.fatkhutdinova@gmail.com
Russian Federation, Kazan, Russia

E A Tafeeva

Kazan State Medical University

Email: tafeeva@mail.ru
Russian Federation, Kazan, Russia

G A Timerbulatova

Kazan State Medical University; Center of Hygiene and Epidemiology in the Republic of Tatarstan

Email: ragura@mail.ru
ORCID iD: 0000-0002-2479-2474
Russian Federation, Kazan, Russia; Kazan, Russia

R R Zalyalov

Kazan State Medical University; Republican Medical Center for Information and Analysis

Email: ramilzal@mail.ru
Russian Federation, Kazan, Russia; Kazan, Russia

References

  1. Health effects of particulate matter. Policy implications for countries in Eastern Europe, Caucasus and Central Asia. WHO Regio­nal Office for Europe. https://www.euro.who.int/__data/assets/pdf_file/0007/189052/Health-effects-of-particulate-matter-final-Rus.pdf (access date: 15.07.2021) (In Russ.)
  2. United States Environmental Protection Agency Particulate Matter (PM) Pollution US EPA. https://www.epa.gov/pm-pollution (access date: 10.07.2021).
  3. White Paper on Ambient ultrafine particles: evidence for policy makers, 2019. https://efca.net/ (access date: 10.07.2021).
  4. Daellenbach K.R., Uzu G., Jiang J., Cassagnes L.E., Leni Z., Vlachou A., Stefenelli G., Canonaco F., Weber S., Segers A., Kuenen J.J.P., Schaap M., Favez O., Albinet A., Aksoyoglu S., Dommen J., Baltensperger U., Geiser M., El Haddad I., Jaffrezo J.L., Prévôt A.S.H. Sources of particulate-matter air pollution and its oxidative potential in Europe. Nature. 2020; 587 (7834): 414–419. doi: 10.1038/s41586-020-2902-8.
  5. Bell M.L., Dominici F., Ebisu K., Zeger S.L., Samet J.M. Spatial and temporal variation in PM (2.5) che­mical composition in the United States for health effects stu­dies. Environ. Health Perspect. 2007; 115 (7): 989–995. doi: 10.1289/ehp.9621.
  6. Kundu S., Stone E.A. Composition and sources of fine particulate matter across urban and rural sites in the Midwestern United States. Environ. Sci. Process Impacts. 2014; 16 (6): 1360–1370. doi: 10.1039/c3em00719g.
  7. Rodríguez-Urrego D., Rodríguez-Urrego L. Air qua­lity during the COVID-19: PM2.5 analysis in the 50 most polluted capital cities in the world. Environ. Pollut. 2020; 266 (Pt. 1): 115042. doi: 10.1016/j.envpol.2020.115042.
  8. Xing Y.F., Xu Y.H., Shi M.H., Lian Y.X. The impact of PM2.5 on the human respiratory system. J. Thorac. Dis. 2016; 8 (1): E69–E74. doi: 10.3978/j.issn.2072-1439.2016.01.19.
  9. Takizawa H. Impacts of particulate air pollution on asthma: Current understanding and future perspectives. Recent. Pat. Inflamm. Allergy Drug Discov. 2015; 9 (2): 128–135. doi: 10.2174/1872213x09666150623110714.
  10. Li J., Sun S., Tang R., Qiu H., Huang Q., Mason T.G., Tian L. Major air pollutants and risk of COPD ­exacerbations: a systematic review and meta-analysis. Int. J. Chron. Obstruct. Pulmon. Dis. 2016; 11: 3079–3091. doi: 10.2147/COPD.S122282.
  11. Cesaroni G., Forastiere F., Stafoggia M., Ander­sen Z., Badaloni С., Beelen R., Caracciolo B., Faire U., Erbel R., Eriksen K., Fratiglioni L., Galassi C., Hampel R., ­Heier M., Hennig F., Hilding A., Hoffmann B., Hou­thuijs D., Jöckel K., Korek M., Lanki T., Leander K., Magnusson P., Migliore E., Ostenson C., Overvad K., Pe­dersen N., Pekkanen J., Penell J., Pershagen G., Pyko A., Raaschou-Nielsen O., Ranzi A., Ricceri F., Sacerdote C., Salomaa V., Swart W., Turunen A., Vineis P., Weinmayr G., Wolf K., Hoogh K., Hoek G., Brunekreef B., Peters A. Long-term exposure to ambient air pollution and incidence of acute coronary events prospective cohort study and meta-ana­lysis in 11 European cohorts from the ­ESCAPE ­Project. Br. Med. J. 2014; 348: f7412. doi: 10.1136/bmj.f7412.
  12. Scheers H., Jacobs L., Casas L., Nemery B., Nawrot T. Long-term exposure to particulate matter air pollution is a risk factor for stroke: meta-analytical evidence. Stroke. 2015; 46 (11): 3058–3066. doi: 10.1161/STROKEAHA.115.009913.
  13. Dockery D.W., Pope C.A. 3rd, Xu X., Spengler J.D., Ware J.H., Fay M.E., Ferris B.G.Jr., Speizer F.E. An association between air pollution and mortality in six U.S. ­cities. N. Engl. J. Med. 1993; 329: 1753–1759. doi: 10.1056/NEJM199312093292401.
  14. Pope C.A. 3rd, Burnett R.T., Thun M.J., Calle E.E., Krewski D., Ito K., Thurston G.D. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine parti­culate air pollution. JAMA. 2002; 287 (9): 1132–1141. doi: 10.1001/jama.287.9.1132.
  15. Hoek G., Krishnan R.M., Beelen R., Peters A., Ostro B., Brunekreef B., Kaufman J.D. Long-term air pollution exposure and cardio- respiratory mortality: a review. Environ. Health. 2013; 28; 12 (1): 43. doi: 10.1186/1476-069X-12-43.
  16. Beelen R., Raaschou-Nielsen O., Stafoggia M., Andersen Z.J., Weinmayr G., Hoffmann B., Wolf K., Samoli E., Fischer P., Nieuwenhuijsen M., Vineis P., Xun W.W., Katsouyanni K., Dimakopoulou K., Oudin A., Forsberg B., Modig L., Havulinna A.S., Lanki T., Turunen A., Oftedal B., Nystad W., Nafstad P., De Faire U., Peder­sen N.L., Östenson C.G., Fratiglioni L., Penell J., Korek M., Pershagen G., Eriksen K.T., Overvad K., Ellermann T., Eeftens M., Peeters P.H., Meliefste K., Wang M., Bueno-de-Mesquita B., Sugiri D., Krämer U., Heinrich J., de Hoogh K., Key T., Peters A., Hampel R., Concin H., Nagel G., Ineichen A., Schaffner E., Probst-Hensch N., Künzli N., Schindler C., Schikowski T., Adam M., Phuleria H., Vilier A., Clavel-Chapelon F., Declercq C., Grioni S., Krogh V., Tsai M.Y., Ricceri F., Sacerdote C., Galassi C., Migliore E., Ranzi A., Cesaroni G., Bada­loni C., Forastiere F., Tamayo I., Amiano P., Dorronsoro M., Katsoulis M., Trichopoulou A., Brunekreef B., Hoek G. Effects of long-term exposure to air pollution on natural cause mortality: an analysis of 22 European Cohorts within the multi-centre ESCAPE project. Lancet. 2014; 383 (9919): 785–795. doi: 10.1016/S0140-6736(13)62158-3.
  17. Yang B.Y., Qian Z., Howard S.W., Vaughn M.G., Fan S.J., Liu K.K., Dong G.H. Global association between ambient air pollution and blood pressure: A systematic review and meta-analysis. Environ. Pollut. 2018; 235: 576–588. doi: 10.1016/j.envpol.2018.01.001.
  18. International Agency for Research on Cancer. IARC monographs on the evaluation of carcinogenic risks to humans. Vol. 109, Outdoor air pollution. Lyon, France: IARC. 2015; 453 р.
  19. Pope C.A. 3rd, Thun M.J., Namboodiri M.M., Docke­ry D.W., Evans J.S., Speizer F.E., Heath C.W.Jr. Particulate air pollution as a predictor of mortality in a prospective study of U.S. adults. Am. J. Respir. Crit. Care Med. 1995; 151 (3, Pt. 1): 669–674. doi: 10.1164/ajrccm/151.3_Pt_1.669.
  20. Laden F., Schwartz J., Speizer F.E., Dockery D.W. Reduction in fine particulate air pollution and mortality: Extended follow-up of the Harvard Six Cities study. Am. J. Respir. Crit. Care Med. 2006; 173 (6): 667–672. doi: 10.1164/rccm.200503-443OC.
  21. Lepeule J., Laden F., Dockery D., Schwartz J. Chro­nic exposure to fine particles and mortality: an exten­ded follow-up of the Harvard Six Cities study from 1974 to 2009. Environ. Health Perspect. 2012; 120 (7): 965–970. doi: 10.1289/ehp.1104660.
  22. Cohen A.J., Brauer M., Burnett R. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Glo­bal Burden of Diseases Study 2015. Lancet. 2017; 389: 1907–1918. doi: 10.1016/S0140-6736(17)30505-6.
  23. Fang G.C., Zhuang Y.J., Cho M.H., Huang C.Y., Xiao Y.F., Tsai K.H. Review of total suspended particles (TSP) and PM2.5 concentration variations in Asia during the years of 1998–2015. Environ. Geochem. Health. 2018; 40 (3): 1127–1144. doi: 10.1007/s10653-017-9992-8.
  24. Lu F., Xu D., Cheng Y., Dong S., Guo C., Jiang X., Zheng X. Systematic review and meta-analysis of the adverse health effects of ambient PM2.5 and PM10 pollution in the Chinese population. Environ. Res. 2015; 136: 196–204. doi: 10.1016/j.envres.2014.06.029.
  25. Revich B.A., Shaposhnikov D.A., Avaliani S.L., Rubinsteyn K.G., Emelina S.V., Shiryaev M.V., Semutnikova E.G., Zakharova P.V., Kislova O.Yu. Hazard assessment of the impact of high temperature and air pollution on public health in Moscow. Gigiena i Sanitariya. 2015; 94 (1): 36–40. (In Russ.)
  26. Re­vich B.A. Fine suspended particulates in ambient air and their health effects in megalopolises. Problemy ekolo­gicheskogo mo­nitoringa i modelirovanie ekosistem. 2018; 29 (3): 53–78. (In Russ.) doi: 10.21513/0207-2564-2018-3-53-78.
  27. Miller K.A., Siscovick D.S., Sheppard L., Shepherd K., Sullivan J.H., Anderson G.L., Kaufman J.D. Long-term exposure to air pollution and incidence of cardiovascular events in women. N. Engl. J. Med. 2007; 356 (5): 447–458. doi: 10.1056/NEJMoa054409.
  28. Dockery D.W., Stone P.H. Cardiovascular risks from fine particulate air pollution. N. Engl. J. Med. 2007; 356 (5): 511–513. doi: 10.1056/NEJMe068274.
  29. Carey I.M., Anderson H.R., Atkinson R.W., Bee­vers S., Cook D.G., Dajnak D., Gulliver J., Kelly F.J. Traffic pollution and the incidence of cardiorespiratory outcomes in a adult cohort in London. Occup. Environ. Med. 2016; 73 (12): 849–856. doi: 10.1136/oemed-2015-103531.
  30. Yang B.Y., Qian Z., Howard S.W., Vaughn M.G., Fan S.J., Liu K.K., Dong G.H. Global association between ambient air pollution and blood pressure: A systematic review and meta-analysis. Environ. Pollut. 2018; 235: 576–588. doi: 10.1016/j.envpol.2018.01.001.
  31. Newby D.E., Mannucci P.M., Tell G.S., Baccarelli A.A., Brook R.D., Donaldson K., Forastiere F., Franchini M., Franco O.H., Graham I., Hoek G., Hoffmann B., Hoylaerts M.F., Künzli N., Mills N., Pekkanen J., Peters A., Piepoli M.F., Rajagopalan S., Storey R.F. Expert position paper on air pollution and cardiovascular disease. Eur. Heart J. 2015; 36 (2): 83–93. doi: 10.1093/eurheartj/ehu458.
  32. Fiordelisi A., Piscitelli P., Trimarco B., Coscioni E., Iaccarino G., Sorriento D. The mechanisms of air pollution and particulate matter in cardiovascular diseases. Heart Fail. Rev. 2017; 22 (3): 337–347. doi: 10.1007/s10741-017-9606-7.
  33. Brook R.D., Urch B., Dvonch J.T., Bard R.L., Speck M., Keeler G., Morishita M., Marsik F.J., Kamal A.S., Kaciroti N., Harkema J., Corey P., Silverman F., Gold D.R., Wellenius G., Mittleman M.A., Rajagopalan S., Brook J.R. Insights into the mechanisms and mediators of the effects of air pollution exposure on blood pressure and vascular function in healthy humans. Hypertension. 2009; 54 (3): 659–667. doi: 10.1161/HYPERTENSIONAHA.109.130237.
  34. Krishnan R.M., Adar S.D., Szpiro A.A., Jorgensen N.W., Van Hee V.C., Barr R.G., O'Neill M.S., Herrington D.M., Polak J.F., Kaufman J.D. Vascular respon­ses to longand short-term exposure to fine particulate matter: MESA Air. J. Am. Coll. Cardiol. 2012; 60 (21): 2158–2166. doi: 10.1016/j.jacc.2012.08.973.
  35. Sun Q., Wang A., Jin X., Natanzon A., Duquaine D., Brook R.D., Aguinaldo J.G., Fayad Z.A., Fuster V., Lippmann M., Chen L.C., Rajagopalan S. Long-term air pollution exposure and acceleration of atherosclerosis and vascular inflammation in an animal model. JAMA. 2005; 294 (23): 3003–3010. doi: 10.1001/jama.294.23.3003.
  36. Brook R.D., Rajagopalan S., Pope C.A. 3rd, Brook J.R., Bhatnagar A., Diez-Roux A.V., Holguin F., Hong Y., Luepker R.V., Mittleman M.A., Peters A., Siscovick D., Smith S.C.Jr., Whitsel L., Kaufman J.D. Particulate matter air pollution and cardiovascular disease. An update to the scientific statement from the American Heart Association. Circulation. 2010; 121 (21): 2331–2378. doi: 10.1161/CIR.0b013e3181dbece1.
  37. Duan R.R., Hao K., Yang T. Air pollution and chro­nic obstructive pulmonary disease. Chronic Dis. Transl. Med. 2020; 6 (4): 260–269. doi: 10.1016/j.cdtm.2020.05.004.
  38. Vos T., Allen C., Arora M. Global, regional, and national incidence, prevalence, and years lived with disabi­lity for 310 diseases and injuries, 1990–2015: a systema­tic ana­lysis for the Glo­bal Burden of Disease Study 2015. Lancet. 2016; 388: 1545–1602. doi: 10.1016/S0140-6736(16)31678-6.
  39. Murray C.J., Lopez A.D. Alternative projections of mortality and disability by cause 1990–2020: global burden of disease study. Lancet. 1997; 349: 1498–1504. doi: 10.1016/S0140-6736(96)07492-2.
  40. Cho C.C., Hsieh W.Y., Tsai C.H., Chen C.Y., Chang H.F., Lin C.S. In vitro and in vivo experimental studies of PM2.5 on disease progression. Intern. J. Environ. Res. Public Health. 2018; 15 (7): 1380. doi: 10.3390/ijerph15071380.
  41. Mortaz E., Masjedi M.R., Allameh A., Adcock I.M. Inflammasome signaling in pathogenesis of lung disea­ses. Curr. Pharm. Des. 2012; 18 (16): 2320–2328. doi: 10.2174/138161212800166077.
  42. Young M.T., Sandler D.P., DeRoo L.A., Vedal S., Kaufman J.D., London S.J. Ambient air pollution exposure and incident adult asthma in a nationwide cohort of U.S. women. Am. J. Respir. Crit. Care Med. 2014; 190 (8): 914–921. doi: 10.1164/rccm.201403-0525OC.
  43. Yu Z., Wei F., Wu M., Lin H., Shui L., Jin M., Wang J., Tang M., Chen K. Association of long-term exposure to ambient air pollution with the incidence of sleep disorders: A cohort study in China. Ecotoxicol. Environ. Saf. 2021; 211: 111956. doi: 10.1016/j.ecoenv.2021.111956.
  44. Liu F., Chen G., Huo W., Wang C., Liu S., Li N., Mao S., Hou Y., Lu Y., Xiang H. Associations between long-term exposure to ambient air pollution and risk of type 2 dia­betes mellitus: A systematic review and meta-analysis. Environ. Pollut. 2019; 252 (Pt. B): 1235–1245. doi: 10.1016/j.envpol.2019.06.033.
  45. Hooper L.G., Young M.T., Keller J.P., Szpiro A.A., O'Brien K.M., Sandler D.P., Vedal S., Kaufman J.D., London S.J. Ambient air pollution and chronic bronchitis in a cohort of U.S. women. Environ. Health Perspect. 2018; 126 (2): 027005. doi: 10.1289/EHP2199.
  46. Nhung N.T.T., Amini H., Schindler C., Kutlar Joss M., Dien T.M., Probst-Hensch N., Perez L., Künzli N. Short-term association between ambient air pollution and pneumonia in children: A systematic review and meta-analysis of time-series and case-crossover studies. Environ. Pollut. 2017; 230: 1000–1008. doi: 10.1016/j.envpol.2017.07.063.
  47. Zoran M.A., Savastru R.S., Savastru D.M., Tautan M.N. Assessing the relationship between surface le­vels of PM2.5 and PM10 particulate matter impact on COVID-19 in Milan, Italy. Sci. Total Environ. 2020; 738: 139825. doi: 10.1016/j.scitotenv.2020.139825.
  48. Mendy A., Wu X., Keller J.L., Fassler C.S., Apewokin S., Mersha T.B., Xie C., Pinney S.M. Long-term exposure to fine particulate matter and hospitalization in COVID-19 patients. Respir. Med. 202; 178: 106313. doi: 10.1016/j.rmed.2021.106313.
  49. Zheng P., Chen Z., Liu Y., Song H., Wu C.H., Li B., Kraemer M.U.G., Tian H., Yan X., Zheng Y., Stenseth N.C., Jia G. Association between coronavirus disease 2019 (COVID-19) and long-term exposure to air pollution: Evidence from the first epidemic wave in China. Environ. Pollut. 202; 276: 116682. doi: 10.1016/j.envpol.2021.116682.
  50. Nor N.S.M., Yip C.W., Ibrahim N., Jaafar M.H., Rashid Z.Z., Mustafa N., Hamid H.H.A., Chandru K., ­Latif M.T., Saw P.E., Lin C.Y., Alhasa K.M., Hashim J.H., Nadzir M.S.M. Particulate matter (PM2.5) as a potential SARS-CoV-2 carrier. Sci. Rep. 2021; 11 (1): 2508. doi: 10.1038/s41598-021-81935-9.
  51. Copat C., Cristaldi A., Fiore M., Grasso A., Zuccarello P., Signorelli S.S., Conti G.O., Ferrante M. The role of air pollution (PM and NO2) in COVID-19 spread and letha­lity: A systematic review. Environ. Res. 2020; 191: 110129. doi: 10.1016/j.envres.2020.110129.
  52. World Health Organisation. Asthma. https://www.who.int/news-room/fact-sheets/detail/asthma (access date: 12.07.2021).
  53. Global Initiative for Asthma. GINA 2021. https://ginasthma.org (access date: 24.06.2021).
  54. Bontinck A., Maes T., Joos G. Asthma and air pollution: recent insights in pathogenesis and clinical implications. Curr. Opin. Pulmon. Med. 2020; 26 (1): 10–19. doi: 10.1097/mcp.0000000000000644.
  55. Guarnieri M., Balmes J.R. Outdoor air pollution and asthma. Lancet. 2014; 383 (9928): 1581–1592. doi: 10.1016/S0140-6736(14)60617-6.
  56. Anenberg S.C., Henze D.K., Tinney V., Kinney P.L., Raich W., Fann N., Malley C.S., Roman H., Lamsal L., Duncan B., Martin R.V., van Donkelaar A., Brauer M., Doherty R., Jonson J.E., Davila Y., Sudo K., Kuylenstierna J.C.I. Estimates of the global burden of ambient PM2.5, ozone, and NO2 on asthma incidence and emergency room visits. Environ. Health Perspect. 2018; 126: 107004. doi: 10.1289/EHP3766.
  57. Ścibor M., Malinowska-Cieślik M. The association of exposure to PM10 with the quality of life in adult asthma patients. Int. J. Occup. Med. Environ. Health. 2020; 33 (3): 311–324. doi: 10.13075/ijomeh.1896.01527.
  58. Khreis H., Kelly C., Tate J., Parslow R., Lucas K., Nieuwenhuijsen M. Exposure to traffic-related air pollution and risk of development of childhood asthma: A systema­tic review and meta-analysis. Environ. Int. 2017; 100: 1–31. doi: 10.1016/j.envint.2016.11.012.
  59. Han K., Ran Z., Wang X., Wu Q., Zhan N., Yi Z., Jin T. Traffic-related organic and inorganic air pollution and risk of development of childhood asthma: A meta-ana­lysis. Environ. Res. 2021; 194: 110493. doi: 10.1016/j.envres.2020.110493.
  60. Anderson H.R., Favarato G., Atkinson R.W. Long-term exposure to air pollution and the incidence of asthma: meta-analysis of cohort studies. Air Qual. Atmos. Health. 2013; 6: 47–56. doi: 10.1007/s11869-011-0144-5.
  61. Garcia E., Berhane K.T., Islam T., McConnell R., Urman R., Chen Z., Gilliland F.D. Association of chan­ges in air quality with incident asthma in children in Ca­lifornia, 1993–2014. JAMA. 2019; 321: 1906–1915. doi: 10.1001/jama.2019.5357.
  62. McDonnell W.F., Abbey D.E., Nishino N., Lebo­witz M.D. Long-term ambient ozone concentration and the incidence of asthma in nonsmoking adults: the AHSMOG Study. Environ. Res. 1999; 80 (2, Pt. 1): 110–121. doi: 10.1006/enrs.1998.3894.
  63. Künzli N., Bridevaux P.O., Liu L.J., Garcia-Esteban R., Schindler C., Gerbase M.W., Sunyer J., Keidel D., Rochat T. Swiss Cohort Study on Air Pollution and Lung Di­seases in Adults. Traffic-related air pollution correlates with adult-onset asthma among never-smokers. Thorax. 2009; 64 (8): 664–670. doi: 10.1136/thx.2008.110031.
  64. Jacquemin B., Siroux V., Sanchez M., Carsin A.E., Schikowski T., Adam M., Bellisario V., Buschka A., Bono R., Brunekreef B., Cai Y., Cirach M., Clavel-Chapelon F., Declercq C., de Marco R., de Nazelle A., Ducret-Stich R.E., Ferretti V.V., Gerbase M.W., Hardy R., Heinrich J., Janson C., Jarvis D., Al Kanaani Z., Keidel D., Kuh D., Le Moual N., Nieuwenhuijsen M.J., Marcon A., Modig L., Pin I., Rochat T., Schindler C., Sugiri D., Stempfelet M., Temam S., Tsai M.Y., Varraso R., Vienneau D., Vier­kötter A., Hansell A.L., Krämer U., Probst-Hensch N.M., Sunyer J., Künzli N., Kauffmann F. Ambient air pollution and adult asthma incidence in six European cohorts (ESCAPE). Environ. Health Perspect. 2015; 123 (6): 613–621. doi: 10.1289/ehp.1408206.
  65. Requia W.J., Adams M.D., Koutrakis P. Association of PM2.5 with diabetes, asthma, and high blood pressure incidence in Canada: A spatiotemporal analysis of the impacts of the energy generation and fuel sales. Sci. Total Environ. 2017; 584–585: 1077–1083. doi: 10.1016/j.scitotenv.2017.01.166.
  66. Lee D.W., Han C.W., Hong Y.C., Oh J.M., Bae H.J., Kim S., Lim Y.H. Long-term exposure to fine particulate matter and incident asthma among elderly adults. Chemosphere. 2021; 272: 129619. doi: 10.1016/j.chemosphere.2021.129619.
  67. Haldar P., Pavord I.D., Shaw D.E., Berry M.A., Tho­mas M., Brightling C.E., Wardlaw A.J., Green R.H. Cluster analysis and clinical asthma phenotypes. Am. J. Respir. Crit. Care Med. 2008; 178: 218–224. doi: 10.1164/rccm.200711-1754OC.
  68. Moore W.C., Meyers D.A., Wenzel S.E., Teague W.G., Li X., D'Agostino R.Jr., Castro M., Curran-­Everett D., Fitzpatrick A.M., Gaston B., Jarjour N.N., Sorkness R., Calhoun W.J., Chung K.F., Comhair S.A., Dweik R.A., Israe E., Peters S.P., Busse W.W.; Natio­nal Heart, Lung, and Blood Institute's Severe Asthma Research Program. Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program. Am. J. Respir. Crit. Care Med. 2010; 181 (4): 315–323. doi: 10.1164/rccm.200906-0896OC.
  69. Fahy J.V. Type 2 inflammation in asthma — present in most, absent in many. Nat. Rev. Immunol. 2015; 15 (1): 57–65. doi: 10.1038/nri3786.
  70. Brusselle G., Bracke K. Targeting immune pathways for therapy in asthma and chronic obstructive pulmonary di­sease. Ann. Am. Thorac. Soc. 2014; 11 (Suppl. 5): S322–S328. doi: 10.1513/AnnalsATS.201403-118AW.
  71. Ngoc L.T.N., Park D., Lee Y., Lee Y.C. Systematic review and meta-analysis of human skin diseases due to particulate matter. Int. J. Environ. Res. Public Health. 2017; 14 (12): 1458. doi: 10.3390/ijerph14121458.
  72. Baldacci S., Maio S., Cerrai S., Sarno G., Baïz N., Simoni M., Annesi-Maesano I., Viegi G. HEALS Study. Allergy and asthma: Effects of the exposure to particulate matter and biological allergens. Respir. Med. 2015; 109 (9): 1089–1104. doi: 10.1016/j.rmed.2015.05.017.
  73. D’Amato G. Environmental urban factors (air pollution and allergens) and the rising trends in allergic respiratory diseases. Allergy. 2002; 57 (72): 30–33. doi: 10.1034/j.1398-9995.57.s72.5.x.
  74. Loomis D., Grosse Y., Lauby-Secretan B., El Ghissassi F., Bouvard V., Benbrahim-Tallaa L., Guha N., Baan R., Mattock H., Straif K. The carcinogenicity of outdoor air pollution. Lancet Oncol. 2013; 14: 1262–1263. doi: 10.1016/s1470-2045(13)70487-x.
  75. IARC Scientific Publication. No. 161. Air pollution and cancer. Ed. By Straif K., Cohen A., Samet J. 2013; 169 p.
  76. Hamra G.B., Guha N., Cohen A., Laden F., Raaschou-Nielsen O., Samet J.M., Vineis P., Forastiere F., Saldiva P., Yorifuji T., Loomis D. Outdoor particulate matter exposure and lung cancer: a systematic review and meta-analysis. Environ. Health Perspect. 2014; 122 (9): 906–911. doi: 10.1289/ehp/1408092.
  77. Huang F., Pan B., Wu J., Chen E., Chen L. Relationship between exposure to PM2.5 and lung cancer incidence and mortality: A meta-analysis. Oncotarget. 2017; 8 (26): 43322–43331. doi: 10.18632/oncotarget.17313.
  78. Pedersen M., Giorgis-Allemand L., Bernard C., Aguilera I., Andersen A.M., Ballester F., Beelen R.M., Chatzi L., Cirach M., Danileviciute A., Dedele A., Eijsden Mv., Estarlich M., Fernández-Somoano A., Fernández M.F., Forastiere F., Gehring U., Grazuleviciene R., Gruzieva O., Heude B., Hoek G., de Hoogh K., van den Hooven E.H., Håberg S.E., Jaddoe V.W., Klümper C., Korek M., Krämer U., Lerchundi A., Lepeule J., Nafstad P., Nystad W., Patelarou E., Porta D., Postma D., Raaschou-Nielsen O., Rudnai P., Sunyer J., Stephanou E., Sørensen M., Thiering E., Tuffnell D., Varró M.J., Vrij­kotte T.G., Wijga A., Wilhelm M., Wright J., Nieuwenhuijsen M.J., Pershagen G., Brunekreef B., Kogevinas M., Slama R. Ambient air pollution and low birth weight: a European cohort study (ESCAPE). The Lancet Respir. Med. 2013; 1 (9): 585–594. doi: 10.1016/S2213-2600(13)70192-9.
  79. Ebisu K., Berman J.D., Bell M.L. Exposure to coarse particulate matter during gestation and birth weight in the U.S. Environ. Int. 2016; 94: 519–524. doi: 10.1016/J.envint.2016.06.011.
  80. Crobeddu B., Aragao-Santiago L., Bui L.C., Boland S., Baeza Squiban A. Oxidative potential of particulate matter 2.5 as predictive indicator of cellular stress. Environ. Pollut. 2017; 230: 125–133. doi: 10.1016/j.envpol.2017.06.051.
  81. Shahpoury P., Zhang Z.W., Arangio A., Celo V., Dabek-Zlotorzynska E., Harner T., Nenes A. The influence of chemical composition, aerosol acidity, and metal dissolution on the oxidative potential of fine particulate matter and redox potential of the lung lining fluid. Environ. Int. 2021; 148: 106343. doi: 10.1016/j.envint.2020.106343.
  82. Mendy A., Wilkerson J., Salo P.M., Weir C.H., Feinstein L., Zeldin D.C., Thorne P.S. Synergistic association of house endotoxin exposure and ambient air pollution with asthma outcomes. Am. J. Respir. Crit. Care Med. 2019; 200 (6): 712–720. doi: 10.1164/rccm.201809-1733OC.
  83. De Rooij M.M.T., Smit L.A.M., Erbrink H.J., Hagenaars T.J., Hoek G., Ogink N.W.M., Winkel A., Hee­derik D.J.J., Wouters I.M. Endotoxin and particulate matter emitted by livestock farms and respiratory health effects in neighboring residents. Environ. Int. 2019; 132: 105009. doi: 10.1016/j.envint.2019.105009.
  84. Khan M.S., Coulibaly S., Matsumoto T., Yano Y., Miura M., Nagasaka Y., Shima M., Yamagishi N., Wakabayashi K., Watanabe T. Association of airborne particles, protein, and endotoxin with emergency department vi­sits for asthma in Kyoto, Japan. Environ. Health Prev. Med. 2018; 23 (1): 41. doi: 10.1186/s12199-018-0731-2.
  85. WAQ Index W.A.Q. 2020. World’s Air Pollution: ­Real-Time Air Quality Index. https://waqi.info/#/c/9.662/0/2z (access date: 25.06.2021).
  86. Eeftens M., Beelen R., de Hoogh K., Bellander T., Cesaroni G., Cirach M., Declercq C., Dėdelė A., Dons E., de Nazelle A., Dimakopoulou K., Eriksen K., Falq G., Fi­scher P., Galassi C., Gražulevičienė R., Heinrich J., Hoffmann B., Jerrett M., Keidel D., Korek M., Lanki T., Lindley S., Madsen C., Mölter A., Nádor G., Nieuwenhuij­sen M., Nonnemacher M., Pedeli X., Raaschou-Nielsen O., Patelarou E., Quass U., Ranzi A., Schindler C., Stempfelet M., Stephanou E., Sugiri D., Tsai M.Y., Yli-Tuomi T., Varró M.J., Vienneau D., Klot Sv., Wolf K., Brunekreef B., Hoek G. Development of land use regression models for PM2.5, PM2.5 absorbance, PM10 and PMcoarse in 20 European Study ­Areas; Results of the ESCAPE project. Environ. Sci. Technol. 2012; 46 (20): 1195–11205. doi: 10.1021/es301948k.
  87. IQAir. https://www.iqair.com/ru/ (access date: 20.06.2021).
  88. CityAir. https://cityair.io/ru/about-project (access date: 07.07.2021).
  89. Re­vich B.A., Shaposhnikov D.A., Avaliani S.L., Lezina E.A., Semutnikova E.G. Changes in air quality in Moscow in 2006–2012 and associated health risks. Problemy ekolo­gicheskogo monitoringa i modelirovanie ekosistem. 2015; 26 (1): 91–122. (In Russ.)
  90. Ulanova T.S., Antipieva M.V., Volkova M.V., Gileva M.I. Investigations of fine particles concentrations in the atmospheric air near highways. Health risk analysis. 2016; (4): 34–40. doi: 10.21668/health.risk/2016.4.05.
  91. Drozd V.A., Kiku P.F., Ananiev V.Yu., Zhigaev D.S., Lisitskaya I.G., Olesik S.M., Kholodov A.S., Ivanov V.V., Chaika V.V., Golokhvast K.S. Annual fluctuations of PM10 particles in the air of Vladivostok city. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk. 2015; (5-2): 646–651. (In Russ.)
  92. Barskova L.S., Vitkina T.I., Gvozdenko T.A., Veremchuk L.V., Golokhvast K.S. Assessment of air pollution by small-sized suspended particulate matter in urbanized territories with various technogenic load (on the example of Vladivostok, Russia). Russian Open Med. J. 2019; 8 (1): e0304. doi: 10.15275/rusomj.2019.0304.
  93. Makarov V.N., Torgovkin N.V. Pollution of atmosphere in Yakutsk by suspended substances. Arctic and Subarctic natural resources. 2020; 25 (1): 43–50. (In Russ.) doi: 10.31242/2618-9712-2020-25-1-4.
  94. Tikho­nova I.V., Zemlyanova M.A., Koldibekova Yu.V., Peskova E.V., Ignatova A.M. Hygienic assessment of aerogenic exposure to parti­culate matter and its impacts on morbidity with respiratory di­seases among children living in a zone influenced by emissions from metallurgic production. Health risk analysis. 2020; (3): 61–69. (In Russ.) doi: 10.21668/health.risk/2020.3.07.
  95. On the state of sanitary and epidemiological well-being of the population in the Russian Federation in 2020. (O sostoyanii sani­tarno-epidemiologicheskogo blagopoluchiya naseleniya v Rossiy­skoy Federatsii v 2020 godu.) State report. Moscow: Fede­ral Service for Supervision of Consumer Rights Protection and Human Welfare. 2021; 256 p. (In Russ.)
  96. Goel A., Izhar S., Gupta T. Study of environmental particle levels, its effects on lung deposition and relationship with human behaviour. Environmental Contaminants. Energy, Environment, and Sustainability. 2018; 77–91. doi: 10.1007/978-981-10-7332-8_4.
  97. Lv H., Li H., Qiu Z., Fan Z., Song J. Assessment of pedestrian exposure and deposition of PM10, PM2.5 and ultrafine particles at an urban roadside: A case study of Xi'an, China. Atmospheric Pollution Res. 2021; 12: 112–121. doi: 10.1016/j.apr.2021.02.018.

© 2021 Eco-Vector





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies