Metal-ligand forms of iron and zinc in the human body

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Metals have a wide range of effects on biological processes, playing an important role in maintaining the functioning of the human body. However, many metals, including essential elements, can have a toxic effect on the body, leading to pathological processes. The biological role of an element depends on a number of physicochemical facts, such as the oxidation degree and the formation of metal-ligand organic and inorganic complexes. For example, most of the iron binds to transferrin and ferritin ensuring the safe transportation of the fenton-active trivalent metal ions in the bloodstream. Free Fe3+ ions lead to the formation of reactive oxygen species and further damage of cell structures. Thus, the chemical form of the element determines the toxicokinetics and toxicodynamics of metals. Knowledge in total exposure of elements in biological fluids is not enough to understand the complex mechanism of biological and abnormal reactions. It is necessary to study the interaction of metal elements with various ligands such as high- and low-molecular compounds (proteins, polysaccharides, nucleic acids, citrates, amino acids). In this regard, the application of modern analytical methods is becoming increasingly important to obtain qualitative and quantitative data on elements, ionic forms, speciation and functions in biological systems. The combination of these methods is called “speciation analysis”, which is a well-established way to study the biological role and metabolism of trace ­elements. This article reviews the main metal-ligand forms of iron (transferrin, albumin, ferritin and citrate) and zinc (albumin, α2-macroglobulin, IgG, transcuprein, metallothioneins, ZIP and ZnT transporters). This information can be useful both in fundamental and applied researches in the biology and medicine.

About the authors

Svetlana V. Notova

Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences,

Email: molgav1995@gmail.com
ORCID iD: 0000-0002-6378-4522
Scopus Author ID: 56191782800

M.D., Doct. Sci. (Med.), Prof., Chief Researcher

Russian Federation, Orenburg, Russia

Tatyana V. Kazakova

Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences

Email: vaisvais13@mail.ru
ORCID iD: 0000-0003-3717-4533
Scopus Author ID: 7004416006

M.D., Junior Researcher, Laboratory of Molecular Genetic Research and Metallomics in Animal Husbandry

Russian Federation, Orenburg, Russia

Olga V. Marshinskaya

Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences

Email: m.olja2013@yandex.ru
ORCID iD: 0000-0002-5611-5128
Scopus Author ID: 57212193944

M.D., Junior Researcher, Laboratory of Molecular Genetic Research and Metallomics in Animal Husbandry

Russian Federation, Orenburg, Russia

Oksana V. Shoshina

Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences

Author for correspondence.
Email: efftreaty@yandex.ru

M.D., PhD student

Russian Federation, ­Orenburg, Russia

References

  1. Dressler VL, Antes FG, Moreira CM, Pozebon D, Duarte FA. As, Hg, I, Sb, Se and Sn speciation in body ­fluids and biological tissues using hyphenated-ICP-MS techniques: A review. Int J Mass Spectrom. 2011;307(1–3):149–162. doi: 10.1016/j.ijms.2011.01.026.
  2. Ogra Y. Development of metallomics research on environmental toxicology. Yakugaku Zasshi. 2015;135(2):307–314. doi: 10.1248/yakushi.14-00233.
  3. Mounicou S, Szpunar J, Lobinski R. Metallomics: the concept and methodology. Chem Soc Rev. 2009;38(4):1119–1138. doi: 10.1039/b713633c.
  4. Trinta VO, Padilha PC, Petronilho S, Santelli RE, Braz BF, Freire AS, Saunders C, Rocha HFD, Sanz-Medel A, Fernández-Sánchez ML. Total metal content and chemical speciation analysis of iron, copper, zinc and iodine in human breast milk using high-performance li­quid chromatography separation and inductively ­coupled plasma mass spectrometry detection. Food Chem. 2020;326:126978. doi: 10.1016/j.foodchem.2020.126978.
  5. Ajsuvakova OP. Speciation analysis by chemical elements in enviromental samples: a contemporary view. Trace elements in medicine. 2018;19(2):12–26. (In Russ) doi: 10.19112/2413-6174-2018-19-2-12-26.
  6. Szpunar J. Trace element speciation analysis of biomaterials by high-performance liquid chromatography with inductively coupled plasma mass spectrometric detection. TrAC Trends in Analytical Chemistry. 2000;19(2–3):127–137. doi: 10.1016/S0165-9936(99)00198-3.
  7. Marcinkowska M, Barałkiewicz D. Multielemental speciation analysis by advanced hyphenated technique — HPLC/ICP-MS: A review. Talanta. 2016;161:177–204. doi: 10.1016/j.talanta.2016.08.034.
  8. Figueroa JA, Stiner CA, Radzyukevich TL, Heiny JA. Metal ion transport quantified by ICP-MS in intact cells. Sci Rep. 2016;6:20551. doi: 10.1038/srep20551.
  9. Zhang R, Li L, Sultanbawa Y, Xu ZP. X-ray fluorescence imaging of metals and metalloids in biological systems. Am J Nucl Med Mol Imaging. 2018;8(3):169–188. PMID: 30042869.
  10. Rekhi H, Rani S, Sharma N, Malik AK. A review on recent applications of high-performance liquid chromatography in metal determination and speciation analy­sis. Crit Rev Anal Chem. 2017;47(6):524–537. doi: 10.1080/10408347.2017.1343659.
  11. Skalny AV, Vyatchanina ES. Speciation analysis prospective in biology and medicine. Kliniko-laboratornyy konsilium. 2008;(3):26–32. (In Russ.)
  12. Singh P, Chowdhuri DK. Environmental presence of hexavalent but not trivalent chromium causes neuroto­xicity in exposed drosophila melanogaster. Mol Neurobiol. 2017;54(5):3368–3387. doi: 10.1007/s12035-016-9909-z.
  13. DesMarais TL, Costa M. Mechanisms of chromium-induced toxicity. Curr Opin Toxicol. 2019;14:1–7. doi: 10.1016/j.cotox.2019.05.003.
  14. Piotrowska A, Pilch W, Tota L, Nowak G. Biological significance of chromium III for the human organism. Med Pr. 2018;69(2):211–223. doi: 10.13075/mp.5893.00625.
  15. Maass F, Michalke B, Willkommen D, Schulte C, Tönges L, Boerger M, Zerr I, Bähr M, Lingor P. Selenium speciation analysis in the cerebrospinal fluid of patients with Parkinson's disease. J Trace Elem Med Biol. 2020;57:126412. doi: 10.1016/j.jtemb.2019.126412.
  16. Takemoto AS, Berry MJ, Bellinger FP. Role of selenoprotein P in Alzheimer’s disease. Ethn Dis. 2010;20(1 Suppl 1): S1-92-5. PMID: 20521393.
  17. Mason RP, Casu M, Butler N, Breda C, Campesan S, Clapp J, Green EW, Dhulkhed D, Kyriacou CP, Giorgini F. Glutathione peroxidase activity is neuroprotective in mo­dels of Huntington’s disease. Nat Genet. 2013;5(10):1249–1254. doi: 10.1038/ng.2732.
  18. Aycicek A, Koc A, Oymak Y, Selek S, Kaya C, Guzel B. Ferrous sulfate (Fe2+) had a faster effect than did ferric polymaltose (Fe3+) on increased oxidant status in children with iron-deficiency anemia. J Pediatr Hematol Oncol. 2014;36(1):57–61. doi: 10.1097/MPH.0b013e318299c91a.
  19. Costas-Rodríguez M, Delanghe J, Vanhaecke F. High-precision isotopic analysis of essential mineral ele­ments in biomedicine: natural isotope ratio variations as potential diagnostic and/or prognostic markers. TrAC Trends in Analytical Chemistry. 2016;76:182–193. doi: 10.1016/j.trac.2015.10.008.
  20. Michalke B, Willkommen D, Drobyshev E, Solov­yev N. The importance of speciation analysis in neurodegeneration research. TrAC Trends in Analytical Chemistry. 2018;104:160–170. doi: 10.1016/j.trac.2017.08.008.
  21. Ajsuvakova OP, Tinkov AA, Willkommen D, Skalnaya AA, Danilov AB, Pilipovich AA, Aschner M, Skalny AV, Michalke B, Skalnaya MG. Assessment of copper, iron, zinc and manganese status and speciation in patients with Parkinson's disease: A pilot study. J Trace Elem Med Biol. 2020;59:126423. doi: 10.1016/j.jtemb.2019.126423.
  22. Vinceti M, Solovyev N, Mandrioli J, Crespi CM, Bonvicini F, Arcolin E, Georgoulopoulou E, Michalke B. Cerebrospinal fluid of newly diagnosed amyotrophic late­ral sclerosis patients exhibits abnormal levels of selenium species including elevated selenite. Neurotoxicology. 2013;38:25–32. doi: 10.1016/j.neuro.2013.05.016.
  23. Mandrioli J, Michalke B, Solovyev N, Grill P, Violi F, Lunetta C, Conte A, Sansone VA, Sabatelli M, Vinceti M. Elevated levels of selenium species in cerebrospinal fluid of amyotrophic lateral sclerosis patients with disease-associated gene mutations. Neurodegener Dis. 2017;17(4–5):171–180. doi: 10.1159/000460253.
  24. Nakashige TG, Nolan EM. Human calprotectin affects the redox speciation of iron. Metallomics. 2017;9(8):1086–1095. doi: 10.1039/c7mt00044h.
  25. Pantopoulos K, Porwal SK, Tartakoff A, Devireddy L. Mechanisms of mammalian iron homeostasis. Biochemistry. 2012;51(29):5705–5724. doi: 10.1021/bi300752r.
  26. Anderson GJ. Mechanisms of iron loading and toxi­city. Am J Hematol. 2007;82:1128–1131. doi: 10.1002/ajh.21075.
  27. Deugnier Y, Turlin B. The pathology of hepatic iron overload. World J Gastroenterol. 2007;13(35):4755–4760. doi: 10.3748/wjg.v13.i35.4755.
  28. Michalke B, Willkommen D, Venkataramani V. Setup of capillary electrophoresis-inductively coupled plasma mass spectrometry (CE-ICP-MS) for quantification of iron redox species (Fe (II), Fe (III)). J Vis Exp. 2020;159. doi: 10.3791/61055.
  29. Gaschler MM, Stockwell BR. Lipid peroxidation in cell death. Biochem Biophys Res Commun. 2017;482(3):419–425. doi: 10.1016/j.bbrc.2016.10.086.
  30. Solovyev N, Vinceti M, Grill P, Mandrioli J, Michalke B. Redox speciation of iron, manganese, and copper in cerebrospinal fluid by strong cation exchange chromatography — sector field inductively coupled plasma mass spectrometry. Anal Chim Acta. 2017;973:25–33. doi: 10.1016/j.aca.2017.03.040.
  31. Strzelak K, Rybkowska N, Wiśniewska A, Koncki R. Photometric flow analysis system for biomedical investigations of iron/transferrin speciation in human serum. Anal Chim Acta. 2017;995:43–51. doi: 10.1016/j.aca.2017.10.015.
  32. Wang J, Pantopoulos K. Regulation of cellular iron metabolism. Biochem J. 2011;434:365–381. doi: 10.1042/BJ20101825.
  33. Hentze MW, Muckenthaler MU, Galy B, Cama­schella C. Two to tango: regulation of Mammalian iron metabolism. Cell. 2010;142:24–38. doi: 10.1016/j.cell.2010.06.028.
  34. McKie AT, Marciani P, Rolfs A, Brennan K, Wehr K, Barrow D, Miret S, Bomford A, Peters TJ, Farzaneh F, Hediger MA, Hentze MW, Simpson RJ. A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol Cell. 2000;5(2):299–309. doi: 10.1016/s1097-2765(00)80425-6.
  35. Soldin OP, Bierbower LH, Choi JJ, Choi JJ, Thompson-Hoffman S, Soldin SJ. Serum iron, ferritin, transferrin, total iron binding capacity, hs-CRP, LDL cholesterol and magnesium in children; new reference intervals using the Dade Dimension Clinical Chemistry System. Clin Chim Acta. 2004;34(1–2):211–217. doi: 10.1016/j.cccn.2004.01.002.
  36. Martínez-Torres C, Renzi M, Layrisse M. Iron absorption by humans from hemosiderin and ferritin, further stu­dies. J Nutr. 1976;106(1):128–135. doi: 10.1093/jn/106.1.128.
  37. Ren Y, Walczyk T. Quantification of ferritin bound iron in human serum using species-specific isotope dilution mass spectrometry. Metallomics. 2014;6(9):1709–1717. doi: 10.1039/c4mt00127c.
  38. Orino K, Watanabe K. Molecular, physiological and clinical aspects of the iron storage protein ferritin. Vet J. 2008;178(2):191–201. doi: 10.1016/j.tvjl.2007.07.006.
  39. Silva AM, Hider RC. Influence of non-enzymatic post-translation modifications on the ability of human serum albumin to bind iron: Implications for non-transferrin-bound iron speciation. Biochim Biophys Acta. 2009;1794(10):1449–1458. doi: 10.1016/j.bbapap.2009.06.003.
  40. He XM, Carter DC. Carter atomic-structure and chemistry of human serum-albumin. Nature. 1992;358(6383):209–215. doi: 10.1038/358209a0.
  41. Rabbani G, Ahn SN. Structure, enzymatic activities, glycation and therapeutic potential of human serum albumin: A natural cargo. Int J Biol Macromol. 2019;123:979–990. doi: 10.1016/j.ijbiomac.2018.11.053.
  42. Königsberger LC, Königsberger E, May PM, Hef­ter GT. Complexation of iron (III) and iron (II) by citrate. Implications for iron speciation in blood plasma. J Inorg Biochem. 2000;78:175–184. doi: 10.1016/s0162-0134(99)00222-6.
  43. Dziuba N, Hardy J, Lindahl PA. Low-molecular-mass iron in healthy blood plasma is not predominately ferric citrate. Metallomics. 2018;10(6):802–817. doi: 10.1039/c8mt00055g.
  44. Kogan S, Sood A, Granick MS. Zinc and wound healing: A review of zinc physiology and clinical applications. Wounds. 2017;29(4):102–106. PMID: 28448263.
  45. Marger L, Schubert CR, Bertranda D. Zinc: An underappreciated modulatory factor of brain function. Biochem Pharmacol. 2014;91(4):426–435. doi: 10.1016/j.bcp.2014.08.002.
  46. McCall KA, Huang C, Fierke CA Function and mechanism of zinc metalloenzymes. J Nutr. 2000;130(5S):1437–1446. doi: 10.1093/jn/130.5.1437S.
  47. Grüngreiff K, Reinhold D, Wedemeyer H. The role of zinc in liver cirrhosis. Ann Hepatol. 2016;15(1):7–16. doi: 10.5604/16652681.1184191.
  48. Terrin G, Berni Canani R, Di Chiara M, Pietravalle A, Aleandri V, Conte F, De Curtis M. Zinc in early life: A key element in the fetus and preterm neonate. Nutrients. 2015;7(12):10427–10446. doi: 10.3390/nu7125542.
  49. Marchan R, Cadenas C, Bolt HM. Zinc as a multipurpose trace element. Arch Toxicol. 2012;86(4):519–520. doi: 10.1007/s00204-012-0843-1.
  50. Andreini C, Banci L, Bertini I, Rosato A. Coun­ting the zinc-proteins encoded in the human genome. J Proteome Res. 2006;5(1):196–201. doi: 10.1021/pr050361j.
  51. Kawahara M, Tanaka KI, Kato-Negishi M. Zinc, carnosine, and neurodegenerative diseases. Nutrients. 2018;10(2):147. doi: 10.3390/nu10020147.
  52. Hojyo S, Fukada T. Roles of zinc signaling in the immune system. J Immunol Res. 2016;2016:6762343. doi: 10.1155/2016/6762343.
  53. Choi S, Liu X, Pan Z. Zinc deficiency and cellular oxidative stress: prognostic implications in cardiovascular diseases. Acta Pharmacol Sin. 2018;39(7):1120–1132. doi: 10.1038/aps.2018.25.
  54. Sanna A, Firinu D, Zavattari P, Valera P. Zinc status and autoimmunity: A systematic review and meta-analysis. Nutrients. 2018;10(1):68. doi: 10.3390/nu10010068.
  55. Takatani-Nakase T. Zinc transporters and the progression of breast cancers. Biol Pharm Bull. 2018;41(10):1517–1522. doi: 10.1248/bpb.b18-00086.
  56. Maret W. Zinc in pancreatic islet biology, insulin sensitivity, and diabetes. Prev Nutr Food Sci. 2017;22(1):1–8. doi: 10.3746/pnf.2017.22.1.1.
  57. Wessels I, Maywald M, Rink L. Zinc as a gatekeeper of immune function. Nutrients. 2017;9(12):1286. doi: 10.3390/nu9121286.
  58. Huang L, Drake VJ, Ho E. Zinc. Adv Nutr. 2015;6(2):224–226. doi: 10.3945/an.114.006874.
  59. Kondaiah P, Yaduvanshi PS, Sharp PA, Pullakhandam R. Iron and zinc homeostasis and interactions: Does enteric zinc excretion cross-talk with intestinal iron absorption? Nutrients. 2019;11(8):1885. doi: 10.3390/nu11081885.
  60. Kimura T, Kambe T. The functions of metallothionein and ZIP and ZnT transporters: An overview and perspective. Int J Mol Sci. 2016;17(3):336. doi: 10.3390/ijms17030336.
  61. Krężela A, Maret W. The biological inorganic che­mistry of zinc ions. Arch Biochem Biophys. 2016;611:3–19. doi: 10.1016/j.abb.2016.04.010.
  62. Brown LC, Hogg JM, Swadźba-Kwaśny M. Lewis acidic ionic liquids. Тop Curr Chem (Cham). 2017;375(5):78. doi: 10.1007/s41061-017-0166-z.
  63. Barnett JP, Blindauer CA, Kassaar O, Khazaipoul S, Martin EM, Sadler PJ, Stewart AJ. Allosteric modulation of zinc speciation by fatty acids. Biochim Biophys Acta. 2013;1830(12):5456–5464. doi: 10.1016/j.bbagen.2013.05.028.
  64. Dietl AM, Amich J, Leal S, Beckmann N, Binder U, Beilhack A, Pearlman E, Haas H. Histidine biosynthesis plays a crucial role in metal homeostasis and virulence of Aspergillus fumigatus. Virulence. 2016;7(4):465–476. doi: 10.1080/21505594.2016.1146848.
  65. Zastrow ML, Pecoraro VL. Designing hydrolytic zinc metalloenzymes. Biochemistry. 2014;53(6):957–978. doi: 10.1021/bi4016617.
  66. Kambe T, Tsuji T, Hashimoto A, Itsumura N. The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism. Physiol Rev. 2015;95(3):749–784. doi: 10.1152/physrev.00035.2014.
  67. Condomina J, Zornoza-Sabina T, Granero L, Polache A. Kinetics of zinc transport in vitro in rat small intestine and colon: interaction with copper. Eur J Pharm Sci. 2002;16(4–5):289–295. doi: 10.1016/s0928-0987(02)00125-2.
  68. Yu Y, Lu L, Luo XG, Liu B. Kinetics of zinc absorption by in situ ligated intestinal loops of broilers involved in zinc transporters. Poult Sci. 2008;87(6):1146–1155. doi: 10.3382/ps.2007-00430.
  69. Gopalsamy GL, Alpers DH, Binder HJ, Tran CD, Ramakrishna BS, Brown I, Manary M, Mortimer E, Young GP. The relevance of the colon to zinc nutrition. Nutrients. 2015;7(1):572–583. doi: 10.3390/nu7010572.
  70. Hara T, Takeda TA, Takagishi T, Fukue K, Kambe T, Fukada T. Physiological roles of zinc transporters: molecular and genetic importance in zinc homeostasis. J Physiol Sci. 2017;67(2):283–301. doi: 10.1007/s12576-017-0521-4.
  71. Yamanaka Y, Matsugano S, Yoshikawa Y, Orino K. Binding analysis of human immunoglobulin G as a zinc-binding protein. Antibodies (Basel). 2016;5(2):13. doi: 10.3390/antib5020013.
  72. Coverdale JPC, Khazaipoul S, Arya S, Stewart AJ, Blindauer CA. Crosstalk between zinc and free fatty ­acids in plasma. Biochim Biophys Acta Mol Cell Biol Lipids. 2019;1864(4):532–542. doi: 10.1016/j.bbalip.2018.09.007.
  73. Smith KT, Failla ML, Cousins RJ. Identification of albumin as the plasma carrier for zinc absorption by perfused rat intestine. Biochem J. 1979;184(3):627–633. doi: 10.1042/bj1840627.
  74. Chen YH, Feng HL, Jeng SS. Zinc supplementation stimulates red blood cell formation in rats. Int J Mol Sci. 2018;19(9):2824. doi: 10.3390/ijms19092824.
  75. Mocchegiani E, Costarelli L, Giacconi R, Cipriano C, Muti E, Malavolta M. Zinc-binding proteins (metallothionein and α2-macroglobulin) and immunosenescence. Exp Gerontol. 2006;41(11):1094–1107. doi: 10.1016/j.exger.2006.08.010.
  76. Yoshino S, Fujimoto K, Takada T, Kawamura S, Ogawa J, Kamata Y, Kodera Y, Shichiri M. Molecular form and concentration of serum α2-macroglobulin in diabetes. Sci Rep. 2019;9(1):12927. doi: 10.1038/s41598-019-49144-7.
  77. Babaeva EE, Vorobyova UA, Denisova EA, Medvedeva DA, Cheknev SB. Binding of zinc cations to human serum γ-globulin. Bull Exp Biol Med. 2006;141(5):602–605. doi: 10.1007/s10517-006-0232-y.
  78. Higashi S, Nagasawa K, Yoshikawa Y. Characterization analysis of human anti-ferritin autoantibodies. Antibodies. 2014;3(1):169–181. doi: 10.3390/antib3010169.
  79. Cheknev SB, Apresova MA, Moryakova NA, Efremova IE, Mezdrokhina AS, Piskovskaya LS, Babajanz AA. Production of the growth factors GM-CSF, G-CSF, and VEGF by human peripheral blood cells induced with metal complexes of human serum γ-globulin formed with copper or zinc ions. Mediators Inflamm. 2014;2014:518265. doi: 10.1155/2014/518265.
  80. Liu N, Lo LS, Askary SH, Jones L, Kidane TZ, Trang T, Nguyen M, Goforth J, Chu YH, Vivas E, Tsai M, Westbrook T, Linder MC. Transcuprein is a macroglobulin regulated by copper and iron availability. J Nutr Biochem. 2007;18(9):597–608. doi: 10.1016/j.jnutbio.2006.11.005.
  81. Gammoh NZ, Rink L. Zinc in Infection and Inflammation. Nutrients. 2017;9(6):624. doi: 10.3390/nu9060624.
  82. Jeong J, Eide DJ. The SLC39 family of zinc transporters. Mol Aspects Med. 2013;34(2–3):612–619. doi: 10.1016/j.mam.2012.05.011.
  83. Kambe T, Hashimoto A, Fujimoto S. Current understanding of ZIP and ZnT zinc transporters in human health and diseases. Cell Mol Life Sci. 2014;71(17):3281–3295. doi: 10.1007/s00018-014-1617-0.
  84. Kambe T. Molecular architecture and function of ZnT transporters. Curr Top Membr. 2012;69:199–220. doi: 10.1016/B978-0-12-394390-3.00008-2.
  85. Fukue K, Itsumura N, Tsuji N, Nishino K, Nagao M, Narita H, Kambe T. Evaluation of the roles of the cytosolic N-terminus and His-rich loop of ZNT proteins using ZNT2 and ZNT3 chimeric mutants. Sci Rep. 2018;8(1):14084. doi: 10.1038/s41598-018-32372-8.
  86. Pan Z, Choi S, Ouadid-Ahidouch H, Yang JM, Beattie JH, Korichneva I. Zinc transporters and dysregulated channels in cancers. Front Biosci (Landmark Ed). 2017;22:623–643. doi: 10.2741/4507.
  87. Bin BH, Seo J, Kim ST. Function, structure, and transport aspects of ZIP and ZnT zinc transporters in immune cells. J Immunol Res. 2018;2018:9365747. doi: 10.1155/2018/9365747.
  88. Krężel A, Maret W. The functions of metamorphic metallothioneins in zinc and copper metabolism. Int J Mol Sci. 2017;18(6):1237. doi: 10.3390/ijms18061237.
  89. Hennigar SR, Kelley AM, McClung JP. Metallothionein and zinc transporter expression in circulating human blood cells as biomarkers of zinc status: a systematic review. Adv Nutr. 2016;7(4):735–746. doi: 10.3945/an.116.012518.
  90. Vignesh KS, Deepe GS. Metallothioneins: Emer­ging modulators in immunity and infection. Int J Mol Sci. 2017;18(10):2197. doi: 10.3390/ijms18102197.
  91. King JC. Zinc: an essential but elusive nutrient. Am J Clin Nutr. 2011;94(2):679–684. doi: 10.3945/ajcn.110.005744.
  92. Gilston BA, Skaar EP, Chazin WJ. Binding of transition metals to S100 proteins. Sci China Life Sci. 2016;59(8):792–801. doi: 10.1007/s11427-016-5088-4.
  93. Kozlyuk N, Monteith AJ, Garcia V, Damo SM, Skaar EP, Chazin WJ. S100 proteins in the innate immune response to pathogens. Methods Mol Biol. 2019;1929:275–290. doi: 10.1007/978-1-4939-9030-6_18.
  94. Wheeler LC, Donor MT, Prell JS, Harms MJ. Multiple evolutionary origins of ubiquitous Cu2+ and Zn2+ binding in the S100 protein family. PLoS One. 2016;11(10):e0164740. doi: 10.1371/journal.pone.0164740.
  95. Maywald M, Wessels I, Rink L. Zinc signals and immunity. Int J Mol Sci. 2017;18(10):2222. doi: 10.3390/ijms18102222.
  96. Lin H, Andersen GR, Yatime L. Crystal structure of human S100A8 in complex with zinc and calcium. BMC Struct Biol. 2016;16(1):8. doi: 10.1186/s12900-016-0058-4.
  97. Yatime L. Structural analysis of S100A8 complex with zinc and calcium: A general protocol for the study of S100 proteins in the presence of divalent cations by X-ray crystallography. Methods Mol Biol. 2019;1929:417–435. doi: 10.1007/978-1-4939-9030-6_26.
  98. Supuran CT. Structure and function of carbo­nic anhydrases. Biochem J. 2016;473(14):2023–2032. doi: 10.1042/BCJ20160115.
  99. McCormick DB. Micronutrient cofactor research with extensions to applications. Nutr Res Rev. 2002;15(2):245–262. doi: 10.1079/NRR200241.
  100. Krężel A, Bal W. Studies of zinc (II) and nickel (II) complexes of GSH, GSSG and their analogs shed more light on their biological relevance. Bioinorg Chem Appl. 2004;2(3–4):293–305. doi: 10.1155/S1565363304000172.
  101. Piatek K, Hartwig A, Bal W. Physiological levels of glutathione enhance Zn (II) binding by a Cys4 zinc finger. Biochem Biophys Res Commun. 2009;389(2):265–268. doi: 10.1016/j.bbrc.2009.08.128.
  102. Li MH, Kwok F, Chang WR, Lau CK, Zhang JP, Lo SC, Jiang T, Liang DC. Crystal structure of brain pyridoxal kinase, a novel member of the ribokinase superfamily. J Biol Chem. 2002;277(48):46385–46390. doi: 10.1074/jbc.M208600200.
  103. Maret W. Zinc biochemistry: From a single zinc enzyme to a key element of life. Adv Nutr. 2013;4(1):82–91. doi: 10.3945/an.112.003038.
  104. Doboszewska U, Wlaź P, Nowak G, Radziwoń-Zaleska M, Cui R, Młyniec K. Zinc in the monoaminergic theo­ry of depression: Its relationship to neural plasticity. Neural Plast. 2017;2017:3682752. doi: 10.1155/2017/3682752.
  105. Paoletti P, Vergnano AM, Barbour B, Casado M. Zinc at glutamatergic synapses. Neuroscience. 2009;158(1):126–136. doi: 10.1016/j.neuroscience.2008.01.061.
  106. Wellenreuther G, Cianci M, Tucoulou R, Meyer-­Klaucke W, Haase H. The ligand environment of zinc stored in vesicles. Biochem Biophys Res Commun. 2009;380(1):198–203. doi: 10.1016/j.bbrc.2009.01.074.

Supplementary files

Supplementary Files
Action
1. JATS XML

© 2022 Eco-Vector





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies