Coronavirus infection and ophthalmology

Cover Page

Cite item

Abstract

This article presents a review of the ocular manifestations of coronavirus disease 2019 (COVID-19) by using materials of Russian and international researchers. After the outbreak of COVID-19 began in China in December 2019, isolated works on ocular manifestations of coronavirus infection began to appear in the literature. The review article summarizes data on the origin and species of viruses that infect humans, the structure of coronaviruses, and intermediate hosts of the virus. A separate chapter is devoted to the mode of transmission for infectious. It is shown that the main route of COVID-19 transmission from person to person is airborne. Of great interest to the ophthalmologists is the review of works devoted to the virus detection in the conjunctival sac. In particular, some studies have shown that in patients with COVID-19, the virus is present in the lacrimal fluid. According to the authors, it indicates that coronavirus might be transmitted through the conjunctiva. These statements are confirmed by clinical and experimental researches. The presence of coronavirus in tears indicates the possibility to cause disease by the ocular route. That is a potential infection source for different types of physicians during routine examinations of patients, and especially by ophthalmologists. Therefore healthcare workers should wear eye protection when dealing with patients who may have COVID-19. Ophthalmologists must take necessary safety precautions, even in conducting a routine physical examination. It is also worth noting that conjunctivitis can be the first symptom of COVID-19. It is proved that the virus in the conjunctiva was detected even in patients without symptoms of eye inflammation. Also interesting for researchers is the manifestations of coronavirus infection in animals, which, according to the authors, is essential for understanding the possible mechanisms of disease development and manifestations in humans.

About the authors

R F Akhmetshin

Kazan State Medical University

Author for correspondence.
Email: rustemfa@mail.ru
SPIN-code: 2030-0194
Russian Federation, Kazan, Russia

A A Rizvanov

Kazan (Volga Region) Federal University

Email: rustemfa@mail.ru
ORCID iD: 0000-0002-9427-5739
SPIN-code: 7031-5996
Scopus Author ID: 6507161167
ResearcherId: H-4486-2013
Russian Federation, Kazan, Russia

S N Bulgar

Kazan State Medical Academy

Email: rustemfa@mail.ru
SPIN-code: 6527-8289
Russian Federation, Kazan, Russia

Z G Kamalov

Kazan State Medical University

Email: rustemfa@mail.ru
Russian Federation, Kazan, Russia

R F Gainutdinova

Kazan State Medical University

Email: rustemfa@mail.ru
Russian Federation, Kazan, Russia

V A Usov

Kazan State Medical University

Email: rustemfa@mail.ru
SPIN-code: 7840-8256
Russian Federation, Kazan, Russia

References

  1. Lu H., Stratton C.W., Tang Y.W. Outbreak of pneumonia of unknown etiology in Wuhan, China: the mystery and the miracle. J. Med. Virol. 2020; 92: 401–402. doi: 10.1002/jmv.25678.
  2. World Health Organization (WHO). Novel Coronavirus (2019‐nCoV) Situation Report-29 (18 February 2020). Geneva, Switzerland: World Health Organization. 2020. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200129-sitrep-9-ncov-v2.pdf?sfvrsn=e2c8915_2 (access date: 21.02.2020).
  3. Enserink M. Update: “A bit chaotic”. Christening of new coronavirus and its disease name create confusion. Sciencemag. 2020. https://www.sciencemag.org/news/2020/02/bit‐chaotic‐christening‐new‐coronavirus‐and‐its‐disease‐name‐create‐confusion (access date: 21.02.2020).
  4. Zhang L., Shen F.M., Chen F. et al. Origin and evolution of the 2019 novel coronavirus. Clin. Infect. Dis. 2020; ciaa112. doi: 10.1093/cid/ciaa112.
  5. World Health Organization (WHO). Novel coronavirus (2019‐nCoV) situation report-3 (23 January 2020). Geneva, Switzerland: World Health Organization. 2020. https://www.who.int/docs/default‐source/coronaviruse/situation‐reports/20200123‐sitrep‐3‐2019‐ncov.pdf?sfvrsn=d6d23643_8 (access date: 21.02.2020).
  6. World Health Organization (WHO). Statement on the Second Meeting of the International Health Regulations (2005) Emergency Committee regarding the outbreak of no­vel coronavirus (2019‐nCoV). Geneva, Switzerland: World Health Organization. 2020. https://www.who.int/news‐room/detail/30‐01‐2020‐statement‐on‐the‐second‐meeting‐of‐the‐international‐health‐regulations (access date: 21.02.2020).
  7. World Health Organization (WHO). Coronavirus di­sease (COVID-19) pandemic. https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (access date: 21.02.2020).
  8. Salata C., Calistri A., Parolin C. et al. Coronaviru­ses: a paradigm of new emerging zoonotic diseases. Pathog. Dis. 2020; 77 (9): ftaa006. doi: 10.1093/femspd/ftaa006.
  9. Loon S.C., Lun K. SARS: a timely reminder. Br. J. Ophthalmol. 2013; 97 (9): 1217–1218. doi: 10.1136/bjophthalmol-2013-303596.
  10. World Health Organization (WHO). Summary ­table of SARS cases by country. 1 Nov. 2002 — 7 Aug. 2003. Summary Table of SARS Cases by Country N-A. Geneva (Switzerland): World Health Organisation (WHO). 2003. https://www.who.int/csr/sars/country/2003_08_15/en/ (access date: 21.02.2020).
  11. Peiris J.S.M., Yuen K.Y., Osterhaus A.D.M.E. et al. The severe acute respiratory syndrome. N. Engl. J. Med. 2003; 349: 2431–2441. doi: 10.1056/NEJMra032498.
  12. Chafekar A., Fielding B.C. MERS-CoV: understanding the latest human coronavirus threat. Viruses. 2018; 10 (2): 93. doi: 10.3390/v10020093.
  13. Zaki A.M., van Boheemen S., Bestebroer T.M. et al. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 2012; 367: 1814–1820. doi: 10.1056/NEJMoa2001017.
  14. Killerby M.E., Biggs H.M., Midgley C.M. et al. Middle East respiratory syndrome coronavirus transmission. Emerg. Infect. Dis. 2020; 26: 191–198. doi: 10.3201/eid2602.190697.
  15. Elkholy A.A., Grant R., Assiri A. et al. ­MERS-CoV infection among healthcare workers and risk factors for death: retrospective analysis of all laboratory-confirmed cases reported to WHO from 2012 to 2 June 2018. J. ­Infect. Public Health. 2020; 13 (3): 418–422. doi: 10.1016/j.jiph.2019.04.011.
  16. Woo P.C.Y., Lau S.K.P., Lam C.S.F. et al. Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J. Virol. 2012; 86 (7): 3995–4008. doi: 10.1128/JVI.06540-11.
  17. Gorenkov D.V., Khantimirova L.M., Shevtsov V.A. et al. An outbreak of a new infectious disease COVID-19: β-coronaviruses as a threat to global healthcare. BIOpreparations. Prevention, Diagnosis, Treatment. 2020; 20 (1): 6–20. (In Russ.) doi: 10.30895/2221-996X-2020-20-1-6-20.
  18. Chen Yu, Qianyun Liu, Guo Deyin. Emerging coronaviruses: genome structure, replication, and pathoge­nesis. J. Med. Virol. 2020; 92 (4): 418–423. doi: 10.1002/jmv.25681.
  19. Shchelkanov M.Y., Kolobu­khina L.V., Lvov D.K. Human coronaviruses (Nidovirales, Coronaviridae): increased level of epidemic danger. Lechashchii vrach. 2013; (10): 49–54 (In Russ.)
  20. Stovba L.F., Lebedev V.N., Petrov A.A. et al. Emer­ging coronavirus which gives rise to the disease in humans. Problemy osobo opasnyh infekcij. 2015; (2): 68–74. (In Russ.) doi: 10.21055/0370-1069-2015-2-68-74.
  21. Du L., Yang Y., Zhou Y. et al. MERS-CoV spike protein: a key target for antivirals. Expert Opin. Ther. Targets. 2017; 21 (2): 131–143. doi: 10.1080/14728222.2017.1271415.
  22. Du L., He Y., Zhou Y. et al. The spike protein of SARS-CoV — A target for vaccine and therapeutic development. Nat. Rev. Microbiol. 2009; 7: 226–236. doi: 10.1038/nrmicro2090.
  23. Beniac D.R., Andonov A., Grudeski E. et al. Architecture of the SARS coronavirus prefusion spike. Nature Struct. Mol. Biol. 2006; 13 (8): 751–752. doi: 10.1038/nsmb1123.
  24. Delmas B., Laude H. Assembly of coronavirus spike protein into trimers and its role in epitope expression. J. Virol. 1990; 64 (11): 5367–5375. doi: 10.1128/JVI.64.11.5367-5375.1990.
  25. Nal B., Chan C., Kien F. et al. Differential maturation and subcellular localization of severe acute respiratory syndrome coronavirus surface proteins S, M and E. J. Gen. Virol. 2005; 86 (5): 1423–1434. doi: 10.1099/vir.0.80671-0.
  26. Neuman B.W., Kiss G., Kunding A.H. et al. A structural analysis of M protein in coronavirus assembly and morphology. J. Struct. Biol. 2011; 174 (1): 11–22. doi: 10.1016/j.jsb.2010.11.021.
  27. DeDiego M.L., Álvarez E., Almazán F. et al. A severe acute respiratory syndrome coronavirus that lacks the E gene is attenuated in vitro and in vivo. J. Virol. 2007; 81 (4): 1701–13. doi: 10.1128/JVI.01467-06.
  28. Nieto-Torres J.L., DeDiego M.L., Verdiá-Báguena C. et al. Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis. PLoS Pathog. 2014; 10 (5): e1004077. doi: 10.1371/journal.ppat.1004077.
  29. Fehr A.R., Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol. Biol. 2015; 1282: 1–23. DOI: 10.1007/ 978-1-4939-2438-7_1.
  30. Chang C.K., Sue S.C., Yu T.H. et al. Modular organization of SARS coronavirus nucleocapsid protein. J. Biomed. Sci. 2006; 13 (1): 59–72. doi: 10.1007/s11373-005-9035-9.
  31. Hurst K.R., Koetzner C.A., Masters P.S. Identification of in vivointeracting domains of the murine coronavirus nucleocapsid protein. J. Virol. 2009; 83 (14): 7221–7234. doi: 10.1128/JVI.00440-09.
  32. Cui L., Wang H., Ji Y. et al. The nucleocapsid protein of coronaviruses acts as a viral suppressor of RNA silencing in mammalian cells. J. Virol. 2015; 89 (17): 9029–9043. doi: 10.1128/JVI.01331-15.
  33. Tekes G., Thiel H.J. Feline coronaviruses: pathoge­nesis of feline infectious peritonitis. Adv. Virus Res. 2016; 96: 193–218. doi: 10.1016/bs.aivir.2016.08.002.
  34. Van Nguyen D., Terada Y., Minami S. et al. Cha­racterization of canine coronavirus spread among domestic dogs in Vietnam. J. Vet. Med. Sci. 2017; 79 (2): 343–349. doi: 10.1292/jvms.16-0538.
  35. Mihindukulasuriya K.A., Wu G., St. Leger J. et al. Identification of a novel coronavirus from a beluga whale by using a panviral microarray. J. Virol. 2008; 82 (10): 5084–5088. doi: 10.1128/JVI.02722-07.
  36. Woo P.C., Lau S.K., Huang Y. et al. Coronavirus diversity, phylogeny and interspecies jumping. Exp. Biol. Med. (Maywood). 2009; 234 (10): 1117–1127. doi: 10.3181/0903-MR-94.
  37. Cui J., Li F., Shi Z.L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 2019; 17 (3): 181–192. doi: 10.1038/s41579-018-0118-9.
  38. Song Z., Xu Y., Bao L. et al. From SARS to MERS, thrusting coronaviruses into the spotlight. Viruses. 2019; 11 (1): 59. doi: 10.3390/v11010059.
  39. Zhou P., Yang X.L., Wang X.G. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020; 579: 270–273. doi: 10.1038/s41586-020-2012-7.
  40. Wassenaar T.M., Zou Y. 2019_nCoV/SARS-CoV-2: Rapid classification of betacoronaviruses and identification of traditional Chinese medicine as potential origin of zoonotic coronaviruses. Lett. Appl. Microbiol. 2020; 70 (5): 342–348. doi: 10.1111/lam.13285.
  41. Hung L.S. The SARS epidemic in Hong Kong: what lessons have we learned? J. R. Soc. Med. 2003; 96 (8): 374–378. DOI: 10.1177/ 014107680309600803.
  42. Wang X.W., Li J., Guo T. et al. Concentration and detection of SARS coronavirus in sewage from Xiao Tang Shan hospital and the 309th hospital of the Chinese ­people’s liberation army. Water Sci. Technol. 2005; 52 (8): 213–221. doi: 10.2166/wst.2005.0266.
  43. Zhang W., Du R.H., Li B. et al. Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerg. Microbes. Infect. 2020; 9 (1): 386–389. doi: 10.1080/22221751.2020.1729071.
  44. Loon S.‐C., Teoh S.C.B., Oon L.L.E. et al. The severe acute respiratory syndrome coronavirus in tears. Br. J. Ophthalmol. 2004; 88 (7): 861–863. doi: 10.1136/bjo.2003.035931.
  45. Chan J.F.‐W., Kok K.‐H., Zhu Z. et al. Genomic characterization of the 2019 novel human‐pathogenic coronavirus isolated from a patient with atypical pneumonia ­after visiting Wuhan. Emerg. Microbes. Infect. 2020; 9 (1): 221–236. doi: 10.1080/22221751.2020.1719902.
  46. Lu C.W., Liu X.F., Jia Z.F. 2019‐nCoV transmission through the ocular surface must not be ignored. Lancet. 2020; 395: e39. doi: 10.1136/bjo.2003.035931.
  47. Dai X. Peking University Hospital Wang Guangfa disclosed treatment status on Weibo and suspected infection without wearing goggles. Beijing News. 2020 Jan 24. http://www.bjnews.com.cn/news/2020/01/23/678189.html (access date: 22.02.2020).
  48. Xia J., Tong J., Liu M. et al. Evaluation of coronavirus in tears and conjunctival secretions of patients with SARS‐CoV‐2 infection. J. Med. Virol. 2020; 92 (6): 589–594. doi: 10.1002/jmv.25725.
  49. Liang Liang, Ping Wu. There may be virus in conjunctival secretion of patients with COVID-19. Acta. Ophthalmol. 2020; 98 (3): 223. doi: 10.1111/aos.14413.
  50. Ping Wu, Fang Duan, Chunhua Luo et al. Characteristics of ocular findings of patients with coronavirus di¬sease 2019 (COVID-19) in Hubei Province, China. JAMA Ophthalmol. 2020 Mar. 31. [Epub ahead of print.] doi: 10.1001/jamaophthalmol.2020.1291.
  51. Wei Deng, Linlin Bao, Hong Gao et al. Rhesus macaques can be effectively infected with SARS-CoV-2 via ocu¬lar conjunctival route. BioRxiv. 2020; 2020.03.13.990036. [Preprint.] doi: 10.1101/2020.03.13.990036.
  52. Tong Z.D., Tang A., Li K.F. et al. Potential presymptomatic transmission of SARS-CoV-2, Zhejiang Province, China, 2020. Emerg. Infect. Dis. 2020; 26 (5): 1052–1054. doi: 10.3201/eid2605.200198.
  53. Prilutskii A.S. Coronavirus disease 2019. Part 1: coronavirus characteristic, epidemiological features. Vestnik of hygiene and epidemiology. 2020; 24 (1): 77–86. (In Russ.)
  54. Hohdatsu T., Okada S., Ishizuka Y. et al. The pre­valence of types I and II feline coronavirus infections in cats. J. Vet. Med. Sci. 1992; 54 (3): 557–562. doi: 10.1292/jvms.54.557.
  55. Pedersen N.C., Boyle J.F., Floyd K. et al. An ente­ric coronavirus infection of cats and its relationship to feline infectious peritonitis. Am. J. Vet. Res. 1981; 42: 368–377. PMID: 6267960.
  56. Chang H.W., Egberink H.F., Rottier P.J. Sequence analysis of feline coronaviruses and the circulating virulent/avirulent theory. Emerg. Infect. Dis. 2011; 17 (4): 744–746. doi: 10.3201/eid1704.102027.
  57. Pedersen N.C., Liu H., Scarlett J. et al. Feline infectious peritonitis: role of the feline coronavirus 3c gene in intestinal tropism and pathogenicity based upon isolates from resident and adopted shelter cats. Virus Res. 2012; 165 (1): 17–28. doi: 10.1016/j.virusres.2011.12.020.
  58. Kipar A., May H., Menger S. et al. Morphologic features and development of granulomatous vasculitis in feline infectious peritonitis. Vet. Pathol. 2005; 42 (3): 321–330. doi: 10.1354/vp.42-3-321.
  59. Hok K. Morbidity, mortality and coronavirus antigen in previously coronavirus free kittens placed in two catteries with feline infectious peritonitis. Acta. Vet. Scand. 1993; 34: 203–210. PMID: 8266899.
  60. Doherty M.J. Ocular manifestations of feline infectious peritonitis. J. Am. Vet. Med. Assoc. 1971; 159: 417–424. PMID: 5107089.
  61. Bailey O.T., Pappenheimer A.M., Cheever F.S. et al. A murine virus (JHM) causing disseminated encepha­lomyelitis with extensive destruction of myelin: II. Patho­logy. J. Exp. Med. 1949; 90 (3): 195–212. doi: 10.1084/jem.90.3.195.
  62. Dick G.W., Niven J.S., Gledhill A.W. A virus related to that causing hepatitis in mice (MHV). Br. J. Exp. Pathol. 1956; 37: 90–98. PMID: 13304245.
  63. De Albuquerque N., Baig E., Ma X. et al. Murine hepatitis virus strain 1 produces a clinically relevant model of severe acute respiratory syndrome in A/J mice. J. Virol. 2006; 80 (21): 10 382–10 394. doi: 10.1128/JVI.00747-06.
  64. Manaker R.A., Piczak C.V., Miller A.A., Stanton M.F. A hepatitis virus complicating studies with mouse leukemia. J. Natl. Cancer Inst. 1961; 27: 29–51. PMID: 13766009.
  65. Robbins S.G., Detrick B., Hooks J.J. Retinopathy following intravitreal injection of mice with MHV strain JHM. Adv. Exp. Med. Biol. 1990; 276: 519–524. doi: 10.1007/978-1-4684-5823-7_72.
  66. Hooks J.J., Percopo C., Wang Y., Detrick B. Retina and retinal pigment epithelial cell autoantibodies are produced during murine coronavirus retinopathy. J. Immunol. 1993; 151: 3381–3389. PMID: 8397257.
  67. Shindler K.S., Kenyon L.C., Dutt M. et al. Experimental optic neuritis induced by a demyelinating strain of mouse hepatitis virus. J. Virol. 2008; 82 (17): 8882–8886. doi: 10.1128/JVI.00920-08.
  68. Corman V.M., Muth D., Niemeyer D. et al. Hosts and sources of endemic human coronaviruses. Adv. Virus Res. 2018; 100: 163–188. doi: 10.1016/bs.aivir.2018.01.001.
  69. Vassilara F., Spyridaki A., Pothitos G. et al. A rare case of human coronavirus 229E associated with acute respiratory distress syndrome in a healthy adult. Case Rep. Infect. Dis. 2018; 2018: 6796839. doi: 10.1155/2018/6796839.
  70. Yang Y., Lu Q., Liu M. et al. Epidemiological and clinical features of the 2019 novel coronavirus outbreak in China. MedRxiv. 2020; 2020.02.10.20021675. [Preprint.] doi: 10.1101/2020.02.10.20021675.
  71. Zhonghua Liu, Xing Bing, Xue Za Zhi. An update on the epidemiological characteristics of novel coronavirus pneumonia (COVID-19). Special Expert Group for Control of the Epidemic of Novel Coronavirus Pneumonia of the Chinese Preventive Medicine Association. 2020; 41 (2): 139–144. doi: 10.3760/cma.j.issn.0254-6450.2020.02.002.
  72. Wang D., Hu B., Hu C. et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020; 323 (11): 1061–1069. doi: 10.1001/jama.2020.1585.
  73. Chen N., Zhou M., Dong X. et al. Еpidemiological and clinical characteristics of 99 cases of 2019 novelcoronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020; 395 (10223): 507–513. doi: 10.1016/S0140-6736(20)30211-7.
  74. Guan W., Ni Z., Hu Y. et al. Clinical characteristics of 2019 novel coronavirus infection in China. ¬MedRxiv. 2020; 2020.02.06.20020974. [Preprint.] doi: 10.1101/2020.02.06.20020974.
  75. Shen M., Peng Z., Xiao Y. et al. Modelling the epi¬demic trend of the 2019 novel coronavirus outbreak in -China. BioRxiv. 2020; 2020.01.23.916726. [Preprint.] doi: 10.1101/2020.01.23.916726.
  76. Kui L., Fang Y.Y., Deng Y. et al. Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province. Chin. Med. J. 2020 Feb 7. [Epub ahead of print.] doi: 10.1097/CM9.0000000000000744.
  77. Holshue M.L., De Bolt C., Lindquist S. et al. First Case of 2019 Novel Coronavirus in the United States. N. Engl. J. Med. 382 (10): 929–936. doi: 10.1056/NEJMoa2001191.
  78. Li Y.C., Bai W.Z., Hashikawa T. The neuroinvasive potential of SARS-CoV2 may be at least partially responsible for the respiratory failure of COVID-19 patients. Med. Virol. 2020 Feb 27. [Epub ahead of print.] doi: 10.1002/jmv.25728.
  79. Gane S.B., Kelly C., Hopkins C. Isolated sudden onset anosmia in COVID-19 infection. A novel syndrome? Rhinology. 2020 Apr 2. [Epub ahead of print.] doi: 10.4193/Rhin20.114.
  80. Vaira L.A., Salzano G., Deiana G. et al. Anosmia and ageusia: common findings in COVID-19 patients. Laryngoscope. 2020 Apr 1. [Epub ahead of print.] doi: 10.1002/lary.28692.
  81. Lüers J.C., Klußmann J.P., Guntinas-Lichius O. The COVID-19 pandemic and otolaryngology: What it comes down to? Laryngorhinootologie. 2020 Mar 26. [Epub ahead of print.] doi: 10.1055/a-1095-2344.
  82. Seah I., Agrawal R. Can the Coronavirus Disease 2019 (COVID-19) affect the eyes? A review of coronaviruses and ocular implications in humans and animals. Ocular immunology and inflammation. 2020; 28 (3): 391–395. doi: 10.1080/09273948.2020.1738501.
  83. Li J.-P.O., Lam D.S.C., Chen Y. et al. Novel Coronavirus disease 2019 (COVID-19): The importance of recognising possible early ocular manifestation and using protective eyewear. Br. J. Ophthalmol. 2020; 104: 297–298. DOI: 10.1136/ bjophthalmol-2020-315994.
  84. Van der Hoek L., Pyrc K., Jebbink M.F. et al. Identification of a new human coronavirus. Nat. Med. 2004; 10 (4): 368–373. doi: 10.1038/nm1024.
  85. Vabret A., Mourez T., Dina J. et al. Human coronavirus NL63, France. Emerg. Infect. Dis. 2005; 11 (8): 1225–1229. doi: 10.3201/eid1108.050110.
  86. Chan W.M., Yuen K.S., Fan D.S. et al. Tears and conjunctival scrapings for coronavirus in patients with SARS. Br. J. Ophthalmol. 2004; 88 (7): 968–969. doi: 10.1136/bjo.2003.039461.
  87. Tong T., Lai T.S. The severe acute respiratory syndrome coronavirus in tears. Br. J. Ophthalmol. 2005; 89 (3): 392. doi: 10.1136/bjo.2004.054130.
  88. World Health Organization (WHO). Infection prevention and control during health care when novel coronavirus (nCoV) infection is suspected. https://www.who.int/publications-detail/infection-preventionand-control-­during-health-care-when-novel-coronavirus-(ncov)-infection-is-suspected-20200125 (access date: 08.02.2020).
  89. National Health Commission of the People’s Republic of China. The guideline on diagnosis and treatment of the novel coronavirus pneumonia (NCP). Revised version of the 5th edition. http://www.nhc.gov.cn/xcs/zhengcwj/202002/d4b895337e19445f8d728fcaf1e3e13a.shtml (access date: 08.02.2020).
  90. Preenie de S. Senanayake, Drazba J., Shadrach K. et al. Angiotensin II and its receptor subtypes in the human retina. Invest. Ophthalmol. Visual Sci. 2007; 48: 3301–3311. doi: 10.1167/iovs.06-1024.
  91. Holappa M., Vapaatalo H., Vaajanen A. Many faces of renin-angiotensin system — focus on eye. Open Ophthalmol. J. 2017; 11 (1): 122–142. doi: 10.2174/1874364101711010122.

© 2020 Akhmetshin R.F., Rizvanov A.A., Bulgar S.N., Kamalov Z.G., Gainutdinova R.F., Usov V.A.

Creative Commons License

This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies