Liquid biopsy in pancreatic ductal adenocarcinoma and precancerous lesions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Pancreatic ductal adenocarcinoma ranks seventh among all cancer-related causes of death and has an overall 5-year survival rate of no more than 15% across all stages. This high mortality rate is largely attributed to delayed diagnosis: due to late clinical manifestation and early metastasis, only about 5% of pancreatic ductal adenocarcinoma cases are detected at stage I. Another important issue is the risk of overtreatment in patients with benign or non-neoplastic pancreatic conditions that mimic pancreatic ductal adenocarcinoma, often resulting in unnecessary and invasive surgeries. A diagnostic approach capable of detecting pancreatic ductal adenocarcinoma with high sensitivity at early stages and distinguishing it from benign pancreatic diseases could improve survival rates and reduce the number of unwarranted high-risk procedures. One of the most promising technologies for early and noninvasive cancer detection is liquid biopsy. This term refers to a set of analytical methods designed to identify tumor-specific genetic, epigenetic, and antigenic alterations by analyzing tumor-derived materials in biological fluids such as plasma, bile, or urine. Liquid biopsy may be used not only for early detection of pancreatic ductal adenocarcinoma and its precursors in high-risk individuals but also for differential diagnosis. This review summarizes current research evaluating the diagnostic potential of liquid biopsy through the detection of extracellular tumor DNA and RNA, as well as circulating tumor cells in blood, pancreatic juice, and bile in patients with pancreatic neoplasms.

About the authors

David P. Atayan

Ilyinskaya Hospital

Email: d.atayan@ihospital.ru
ORCID iD: 0000-0001-9816-3008

Head of Depart., Depart. of Oncology and Hematology

Russian Federation, Ilyinskoye

Tagir I. Rakhmatullin

Lomonosov Moscow State University; University Clinic of Moscow State University named after M.V. Lomonosov

Author for correspondence.
Email: tagir.rakhmatullin@internet.ru
ORCID iD: 0000-0002-4601-3478
SPIN-code: 7068-1678

Student, Rsch. Asst., Depart. of laboratory diagnosis

Russian Federation, 1 st. Leninskie Gory, Moscow 119991; Moscow

Mark Jain

University Clinic of Moscow State University named after M.V. Lomonosov

Email: jain-mark@outlook.com
ORCID iD: 0000-0002-6594-8113
SPIN-code: 3783-4441

Cand. Sci. (Bio.), Head and Senior Researcher, Depart. of laboratory diagnosis

Russian Federation, Moscow

Larisa M. Samokhodskaya

Lomonosov Moscow State University; University Clinic of Moscow State University named after M.V. Lomonosov

Email: slm@fbm.msu.ru
ORCID iD: 0000-0001-6734-3989
SPIN-code: 5404-6202

 Cand. Sci. (Med.), Assoc. Prof., Head of Depart., Depart. of laboratory diagnosis

Russian Federation, 1 st. Leninskie Gory, Moscow 119991; Moscow

Vyacheslav I. Egorov

Ilyinskaya Hospital

Email: egorov12333@gmail.com
ORCID iD: 0000-0002-8805-7604
SPIN-code: 4487-1663

MD, Dr. Sci. (Med.), Prof., Head of Depart., Depart. hepatobiliopancreatic surgery

Russian Federation, Ilyinskoye

References

  1. Bengtsson A, Andersson R, Ansari D. The actual 5-year survivors of pancreatic ductal adenocarcinoma based on real-world data. Sci Rep. 2020;10(1):16425. doi: 10.1038/S41598-020-73525-Y
  2. Shangina OV, Maximovich DM, Zaridze DG. Descriptive, analytical and molecular epidemiology of pancreatic cancer. Siberian Journal of Oncology. 2022;21(3):90–103. doi: 10.21294/1814-4861-2022-21-3-90-103
  3. Zeid HA, Salfi G, Mansour R, et al. Differentiating Between Mass-forming Chronic Pancreatitis and Pancreatic Ductal Adenocarcinoma: A Challenging Clinical Approach. International Journal of Clinical Research. 2022;3(1):292–300. doi: 10.38179/IJCR.V3I1.244
  4. Paklina OV, Setdikova GR, Chekmareva IA. Chronic pancreatitis or pancreatic ductal adenocarcinoma? I.P. Pavlov Russian Medical Biological Herald. 2016;(1):6–18. EDN: WCDTFX
  5. Kniazeva MS, Shestopalova TM, Zabegina LM, et al. Prospects of differential diagnosis of focal lesion of pancreas by the microRNA assessment. South Russian Journal of Cancer. 2023;4(3):20–35. doi: 10.37748/2686-9039-2023-4-3-3
  6. Chang XY, Wu Y, Li Y, et al. Intraductal papillary mucinous neoplasms of the pancreas: Clinical association with KRAS. Mol Med Rep. 2018;17(6):8061. doi: 10.3892/MMR.2018.8875
  7. Sagami R, Yamao K, Nakahodo J, et al. Pre-Operative Imaging and Pathological Diagnosis of Localized High-Grade Pancreatic Intra-Epithelial Neoplasia without Invasive Carcinoma. Cancers. 2021;13(5):1–23. doi: 10.3390/CANCERS13050945
  8. Mikhetko AA, Artemieva AS, Ivko OV, et al. Endoscopic endosonography with fine-needle aspiration biopsy in the diagnosis of pancreatic tumors. Vopr Onkol. 2021;67(3):397–404. doi: 10.37469/0507-3758-2021-67-3-397-404
  9. Baranova IB. Diagnosis of cystic formations of the pancreas. study of material obtained by the fine-needle biopsy. Russian News of Clinical Cytology. 2020;24(3):19–30. doi: 10.24412/1562-4943-2020-3-0004 EDN: JRUFAF
  10. Pkataev IA, Gladkov OA, Zagainov VE, et al. Practical guidelines for drug treatment of pancreas cancer. Malignant Tumoursis. 2021;11(3S2–1). doi: 10.18027/2224-5057-2021
  11. Asbun HJ, Conlon K, Fernandez-Cruz L, et al. When to perform a pancreatoduodenectomy in the absence of positive histology? A consensus statement by the International Study Group of Pancreatic Surgery. Surgery. 2014;155(5):887–892. doi: 10.1016/J.SURG.2013.12.032
  12. Beger HG. Benign Tumors of the Pancreas-Radical Surgery Versus Parenchyma-Sparing Local Resection-the Challenge Facing Surgeons. J Gastrointest Surg. 2018;22(3):562–566. doi: 10.1007/S11605-017-3644-2
  13. Khatkov IE, Poroshina EG, Solovyeva OI, et al. Diagnostics and treatment of intraductal papillary mucinous pancreas neoplasm. Ter Arkh. 2023;95(8):686–691. doi: 10.26442/00403660.2023.08.202340
  14. Yang Y, Ding Y, Gong Y, et al. The genetic landscape of pancreatic head ductal adenocarcinoma in China and prognosis stratification. BMC Cancer. 2022;22(1):1–12. doi: 10.1186/S12885-022-09279-9/FIGURES/2
  15. Hayashi A, Hong J, Iacobuzio-Donahue CA. The pancreatic cancer genome revisited. Nat Rev Gastroenterol Hepatol. 2021;18(7):469–481. doi: 10.1038/S41575-021-00463-Z
  16. Mas L, Lupinacci RM, Cros J, et al. Intraductal Papillary Mucinous Carcinoma Versus Conventional Pancreatic Ductal Adenocarcinoma: A Comprehensive Review of Clinical-Pathological Features, Outcomes, and Molecular Insights. Int J Mol Sci. 2021;22(13):6756. doi: 10.3390/IJMS22136756
  17. Bararia A, Dey S, Gulati S, et al. Differential methylation landscape of pancreatic ductal adenocarcinoma and its precancerous lesions. Hepatobiliary & Pancreatic Diseases International. 2020;19(3):205–217. doi: 10.1016/J.HBPD.2020.03.010
  18. Mishra NK, Guda C. Genome-wide DNA methylation analysis reveals molecular subtypes of pancreatic cancer. Oncotarget. 2017;8(17):28990. doi: 10.18632/ONCOTARGET.15993
  19. Trifylli EM, Kriebardis AG, Koustas E, et al. A Current Synopsis of the Emerging Role of Extracellular Vesicles and Micro-RNAs in Pancreatic Cancer: A Forward-Looking Plan for Diagnosis and Treatment. Int J Mol Sci. 2024;25(6):3406. doi: 10.3390/IJMS25063406
  20. Yu J, Li A, Hong SM, et al. MicroRNA alterations of pancreatic intraepithelial neoplasias. Clin Cancer Res. 2012;18(4):981–992. doi: 10.1158/1078-0432.CCR-11-2347
  21. Permuth-Wey J, Chen DT, Fulp WJ, et al. Plasma MicroRNAs as Novel Biomarkers for Patients with Intraductal Papillary Mucinous Neoplasms of the Pancreas. Cancer Prev Res. 2015;8(9):826. doi: 10.1158/1940-6207.CAPR-15-0094
  22. Nicoletti A, Vitale F, Quero G, et al. Immunohistochemical Evaluation of the Expression of Specific Membrane Antigens in Patients with Pancreatic Ductal Adenocarcinoma. Cancers. 2023;15(18):4586. doi: 10.3390/CANCERS15184586/S1
  23. Guo J, Xie K, Zheng S. Molecular Biomarkers of Pancreatic Intraepithelial Neoplasia and Their Implications in Early Diagnosis and Therapeutic Intervention of Pancreatic Cancer. Int J Biol Sci. 2016;12(3):292–301. doi: 10.7150/IJBS.14995
  24. Freed IM, Kasi A, Fateru O, et al. Circulating Tumor Cell Subpopulations Predict Treatment Outcome in Pancreatic Ductal Adenocarcinoma (PDAC) Patients. Cells. 2023;12(18):2266. doi: 10.3390/CELLS12182266/S1
  25. Stejskal P, Goodarzi H, Srovnal J, et al. Circulating tumor nucleic acids: biology, release mechanisms, and clinical relevance. Molecular Cancer. 2023;22(1):1–21. doi: 10.1186/S12943-022-01710-W
  26. Faria G, Silva E, Da Fonseca C, Quirico-Santos T. Circulating Cell-Free DNA as a Prognostic and Molecular Marker for Patients with Brain Tumors under Perillyl Alcohol-Based Therapy. Int J Mol Sci. 2018;19(6). doi: 10.3390/IJMS19061610
  27. Underhill HR. Leveraging the Fragment Length of Circulating Tumour DNA to Improve Molecular Profiling of Solid Tumour Malignancies with Next-Generation Sequencing: A Pathway to Advanced Non-invasive Diagnostics in Precision Oncology? Mol Diagn Ther. 2021;25(4):389. doi: 10.1007/S40291-021-00534-6
  28. Wu J, Zhou Y, Zhang CY, et al. Co-amplification at lower denaturation-temperature PCR combined with unlabled-probe high-resolution melting to detect KRAS codon 12 and 13 mutations in plasma-circulating DNA of pancreatic adenocarcinoma cases. Asian Pac J Cancer Prev. 2014;15(24):10647–10652. doi: 10.7314/APJCP.2014.15.24.10647
  29. Berger AW, Schwerdel D, Costa IG, et al. Detection of Hot-Spot Mutations in Circulating Cell-Free DNA From Patients with Intraductal Papillary Mucinous Neoplasms of the Pancreas. Gastroenterology. 2016;151(2):267–270. doi: 10.1053/J.GASTRO.2016.04.034
  30. Kirchweger P, Kupferthaler A, Burghofer J, et al. Prediction of response to systemic treatment by kinetics of circulating tumor DNA in metastatic pancreatic cancer. Front Oncol. 2022;12:902177. doi: 10.3389/FONC.2022.902177
  31. Cohen JD, Javed AA, Thoburn C, et al. Combined circulating tumor DNA and protein biomarker-based liquid biopsy for the earlier detection of pancreatic cancers. Proc Natl Acad Sci USA. 2017;114(38):10202–10207. doi: 10.1073/PNAS.1704961114
  32. Affolter KE, Hellwig S, Nix DA, et al. Detection of circulating tumor DNA without a tumor-informed search using next-generation sequencing is a prognostic biomarker in pancreatic ductal adenocarcinoma. Neoplasia. 2021;23(9):859. doi: 10.1016/J.NEO.2021.06.005
  33. Watanabe K, Nakamura T, Kimura Y, et al. Tumor-Informed Approach Improved ctDNA Detection Rate in Resected Pancreatic Cancer. Int J Mol Sci. 2022;23(19):11521. doi: 10.3390/IJMS231911521/S1
  34. Wang R, Zhao Y, Wang Y, et al. Diagnostic and Prognostic Values of KRAS Mutations on EUS-FNA Specimens and Circulating Tumor DNA in Patients with Pancreatic Cancer. Clin Transl Gastroenterol. 2022;13(5):e00487. doi: 10.14309/CTG.0000000000000487
  35. Levink IJM, Jansen MPHM, Azmani Z, et al. Mutation Analysis of Pancreatic Juice and Plasma for the Detection of Pancreatic Cancer. Int J Mol Sci. 2023;24(17):13116. doi: 10.3390/IJMS241713116
  36. Volckmar AL, Endris V, Gaida MM, et al. Next generation sequencing of the cellular and liquid fraction of pancreatic cyst fluid supports discrimination of IPMN from pseudocysts and reveals cases with multiple mutated driver clones: First findings from the prospective ZYSTEUS biomarker study. Genes Chromosomes Cancer. 2019;58(1):3–11. doi: 10.1002/GCC.22682
  37. Choi MH, Mejlænder-Andersen E, Manueldas S, et al. Mutation analysis by deep sequencing of pancreatic juice from patients with pancreatic ductal adenocarcinoma. BMC Cancer. 2019;19(1):1–12. doi: 10.1186/S12885-018-5195-7
  38. Jain M, Atayan D, Rakhmatullin T, et al. Cell-Free Tumor DNA Detection-Based Liquid Biopsy of Plasma and Bile in Patients with Various Pancreatic Neoplasms. Biomedicines. 2024;12(1):220. doi: 10.3390/BIOMEDICINES12010220
  39. Shinjo K, Hara K, Nagae G, et al. A novel sensitive detection method for DNA methylation in circulating free DNA of pancreatic cancer. PLoS One. 2020;15(6):e0233782. doi: 10.1371/JOURNAL.PONE.0233782
  40. Yi JM, Guzzetta AA, Bailey VJ, et al. Novel methylation biomarker panel for the early detection of pancreatic cancer. Clin Cancer Res. 2013;19(23):6544–6555. doi: 10.1158/1078-0432.CCR-12-3224
  41. Eissa MAL, Lerner L, Abdelfatah E, et al. Promoter methylation of ADAMTS1 and BNC1 as potential biomarkers for early detection of pancreatic cancer in blood. Clin Epigenetics. 2019;11(1):59. doi: 10.1186/S13148-019-0650-0
  42. Wu H, Guo S, Liu X, et al. Noninvasive detection of pancreatic ductal adenocarcinoma using the methylation signature of circulating tumour DNA. BMC Med. 2022;20(1):1–17. doi: 10.1186/S12916-022-02647-Z/TABLES/3
  43. Liggett T, Melnikov A, Yi QL, et al. Differential methylation of cell-free circulating DNA among patients with pancreatic cancer versus chronic pancreatitis. Cancer. 2010;116(7):1674–1680. doi: 10.1002/CNCR.24893
  44. Wu Y, Seufert I, Al-Shaheri FN, et al. DNA-methylation signature accurately differentiates pancreatic cancer from chronic pancreatitis in tissue and plasma. Gut. 2023;72(12):2344–2353. doi: 10.1136/GUTJNL-2023-330155
  45. Majumder S, Raimondo M, Taylor WR, et al. Methylated DNA in Pancreatic Juice Distinguishes Patients with Pancreatic Cancer From Controls. Clin Gastroenterol Hepatol. 2020;18(3):676. doi: 10.1016/J.CGH.2019.07.017
  46. Yokoyama S, Kitamoto S, Higashi M, et al. Diagnosis of Pancreatic Neoplasms Using a Novel Method of DNA Methylation Analysis of Mucin Expression in Pancreatic Juice. PLoS One. 2014;9(4):93760. doi: 10.1371/JOURNAL.PONE.0093760
  47. Que R, Ding G, Chen J, Cao L. Analysis of serum exosomal microRNAs and clinicopathologic features of patients with pancreatic adenocarcinoma. World J Surg Oncol. 2013;11:219. doi: 10.1186/1477-7819-11-219
  48. Zou X, Wei J, Huang Z, et al. Identification of a six-miRNA panel in serum benefiting pancreatic cancer diagnosis. Cancer Med. 2019;8(6):2810–2822. doi: 10.1002/CAM4.2145
  49. Lai X, Wang M, McElyea SD, et al. A microRNA signature in circulating exosomes is superior to exosomal glypican-1 levels for diagnosing pancreatic cancer. Cancer Lett. 2017;393:86–93. doi: 10.1016/J.CANLET.2017.02.019
  50. Xu C, Jun E, Okugawa Y, et al. A Circulating Panel of circRNA Biomarkers for the Noninvasive and Early Detection of Pancreatic Ductal Adenocarcinoma. Gastroenterology. 2024;166(1):178–190.e16. doi: 10.1053/J.GASTRO.2023.09.050
  51. Cao Z, Liu C, Xu J, et al. Plasma microRNA panels to diagnose pancreatic cancer: Results from a multicenter study. Oncotarget. 2016;7(27):41575–41583. doi: 10.18632/ONCOTARGET.9491
  52. Guo S, Qin H, Liu K, et al. Blood small extracellular vesicles derived miRNAs to differentiate pancreatic ductal adenocarcinoma from chronic pancreatitis. Clin Transl Med. 2021;11(9):11. doi: 10.1002/CTM2.520
  53. Vicentini C, Calore F, Nigita G, et al. Exosomal miRNA signatures of pancreatic lesions. BMC Gastroenterol. 2020;20(1):1–11. doi: 10.1186/S12876-020-01287-Y/FIGURES/4
  54. Nesteruk K, Levink IJM, de Vries E, et al. Extracellular vesicle-derived microRNAs in pancreatic juice as biomarkers for detection of pancreatic ductal adenocarcinoma. Pancreatology. 2022;22(5):626–635. doi: 10.1016/J.PAN.2022.04.010
  55. Permuth-Wey J, Chen DT, Fulp WJ, et al. Plasma MicroRNAs as Novel Biomarkers for Patients with Intraductal Papillary Mucinous Neoplasms of the Pancreas. Cancer Prev Res. 2015;8(9):826. doi: 10.1158/1940-6207.CAPR-15-0094
  56. Kuratomi N, Takano S, Fukasawa M, et al. MiR-10a in Pancreatic Juice as a Biomarker for Invasive Intraductal Papillary Mucinous Neoplasm by miRNA Sequencing. Int J Mol Sci. 2021;22(6):1–12. doi: 10.3390/IJMS22063221
  57. Liu H, Sun B, Wang S, et al. Circulating Tumor Cells as a Biomarker in Pancreatic Ductal Adenocarcinoma. Cell Physiol Biochem. 2017;42(1):373–382. doi: 10.1159/000477481
  58. Ankeny JS, Court CM, Hou S, et al. Circulating tumour cells as a biomarker for diagnosis and staging in pancreatic cancer. Br J Cancer. 2016;114(12):1367–1375. doi: 10.1038/BJC.2016.121
  59. Dotan E, Alpaugh RK, Ruth K, et al. Prognostic Significance of MUC-1 in Circulating Tumor Cells in Patients with Metastatic Pancreatic Adenocarcinoma. Pancreas. 2016;45(8):1131–1135. doi: 10.1097/MPA.0000000000000619
  60. Kuvendjiska J, Müller F, Bronsert P, et al. Circulating Epithelial Cells in Patients with Intraductal Papillary Mucinous Neoplasm of the Pancreas. Life. 2023;13(7):1570. doi: 10.3390/life13071570
  61. Buscail E, Alix-Panabières C, Quincy P, et al. High Clinical Value of Liquid Biopsy to Detect Circulating Tumor Cells and Tumor Exosomes in Pancreatic Ductal Adenocarcinoma Patients Eligible for Up-Front Surgery. Cancers. 2019;11(11):1656. doi: 10.3390/CANCERS11111656
  62. Kitagawa K, Mitoro A, Tomooka F, et al. Diagnostic yield of liquid-based cytology in serial pancreatic juice aspiration cytological examination. DEN open. 2022;3(1):e177. doi: 10.1002/DEO2.177
  63. Tag-Adeen M, Ozawa E, Ogihara K, et al. The role of pancreatic juice cytology in the diagnosis of pancreatic intraductal papillary mucinous neoplasm. Revista espanola de enfermedades digestivas. 2018;110(12):775–781. doi: 10.17235/REED.2018.5564/2018
  64. Miyamoto K, Matsumoto K, Kato H, et al. The efficacy of pancreatic juice cytology with liquid-based cytology for evaluating malignancy in patients with intraductal papillary mucinous neoplasm. BMC Gastroenterol. 2020;20(1):319. doi: 10.1186/S12876-020-01465-Y
  65. Özcan Ö, Arikan S. Determining the Risk Factors of Complications Due to Endoscopic Retrograde Cholangiopancreatography. Cureus. 2024;16(1):e51666. doi: 10.7759/CUREUS.51666
  66. Sorber L, Zwaenepoel K, Deschoolmeester V, et al. A Comparison of Cell-Free DNA Isolation Kits: Isolation and Quantification of Cell-Free DNA in Plasma. The Journal of Molecular Diagnostics. 2017;19(1):162–168. doi: 10.1016/J.JMOLDX.2016.09.009
  67. Taylor SC, Laperriere G, Germain H. Droplet Digital PCR versus qPCR for gene expression analysis with low abundant targets: from variable nonsense to publication quality data. Scientific Reports. 2017;7(1):1–8. doi: 10.1038/s41598-017-02217-x
  68. Cheng YW, Stefaniuk C, Jakubowski MA. Real-time PCR and targeted next-generation sequencing in the detection of low level EGFR mutations: Instructive case analyses. Respir Med Case Rep. 2019;28:100901. doi: 10.1016/J.RMCR.2019.100901
  69. Hong SR, Shin KJ. Bisulfite-Converted DNA Quantity Evaluation: A Multiplex Quantitative Real-Time PCR System for Evaluation of Bisulfite Conversion. Front Genet. 2021;12:618955. doi: 10.3389/FGENE.2021.618955/BIBTEX
  70. Martisova A, Holcakova J, Izadi N, et al. DNA Methylation in Solid Tumors: Functions and Methods of Detection. Int J Mol Sci. 2021;22(8):4247. doi: 10.3390/IJMS22084247
  71. Methylation-sensitive restriction enzymes (MSREs). Accessed February 23, 2024. https://www.takarabio.com/us/products/cell_biology_and_epigenetics/epigenetics/dna_preparation/msre_overview

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. General genetic, epigenetic and molecular changes related to pancreatic ductal adenocarcinoma formation.

Download (131KB)

© 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.



Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».