Liquid biopsy in pancreatic ductal adenocarcinoma and precancerous lesions
- Authors: Atayan D.P.1, Rakhmatullin T.I.2,3, Jain M.3, Samokhodskaya L.M.2,3, Egorov V.I.1
-
Affiliations:
- Ilyinskaya Hospital
- Lomonosov Moscow State University
- University Clinic of Moscow State University named after M.V. Lomonosov
- Issue: Vol 106, No 2 (2025)
- Pages: 243-257
- Section: Reviews
- URL: https://journals.rcsi.science/kazanmedj/article/view/292223
- DOI: https://doi.org/10.17816/KMJ635015
- ID: 292223
Cite item
Abstract
Pancreatic ductal adenocarcinoma ranks seventh among all cancer-related causes of death and has an overall 5-year survival rate of no more than 15% across all stages. This high mortality rate is largely attributed to delayed diagnosis: due to late clinical manifestation and early metastasis, only about 5% of pancreatic ductal adenocarcinoma cases are detected at stage I. Another important issue is the risk of overtreatment in patients with benign or non-neoplastic pancreatic conditions that mimic pancreatic ductal adenocarcinoma, often resulting in unnecessary and invasive surgeries. A diagnostic approach capable of detecting pancreatic ductal adenocarcinoma with high sensitivity at early stages and distinguishing it from benign pancreatic diseases could improve survival rates and reduce the number of unwarranted high-risk procedures. One of the most promising technologies for early and noninvasive cancer detection is liquid biopsy. This term refers to a set of analytical methods designed to identify tumor-specific genetic, epigenetic, and antigenic alterations by analyzing tumor-derived materials in biological fluids such as plasma, bile, or urine. Liquid biopsy may be used not only for early detection of pancreatic ductal adenocarcinoma and its precursors in high-risk individuals but also for differential diagnosis. This review summarizes current research evaluating the diagnostic potential of liquid biopsy through the detection of extracellular tumor DNA and RNA, as well as circulating tumor cells in blood, pancreatic juice, and bile in patients with pancreatic neoplasms.
Full Text
##article.viewOnOriginalSite##About the authors
David P. Atayan
Ilyinskaya Hospital
Email: d.atayan@ihospital.ru
ORCID iD: 0000-0001-9816-3008
Head of Depart., Depart. of Oncology and Hematology
Russian Federation, IlyinskoyeTagir I. Rakhmatullin
Lomonosov Moscow State University; University Clinic of Moscow State University named after M.V. Lomonosov
Author for correspondence.
Email: tagir.rakhmatullin@internet.ru
ORCID iD: 0000-0002-4601-3478
SPIN-code: 7068-1678
Student, Rsch. Asst., Depart. of laboratory diagnosis
Russian Federation, 1 st. Leninskie Gory, Moscow 119991; MoscowMark Jain
University Clinic of Moscow State University named after M.V. Lomonosov
Email: jain-mark@outlook.com
ORCID iD: 0000-0002-6594-8113
SPIN-code: 3783-4441
Cand. Sci. (Bio.), Head and Senior Researcher, Depart. of laboratory diagnosis
Russian Federation, MoscowLarisa M. Samokhodskaya
Lomonosov Moscow State University; University Clinic of Moscow State University named after M.V. Lomonosov
Email: slm@fbm.msu.ru
ORCID iD: 0000-0001-6734-3989
SPIN-code: 5404-6202
Cand. Sci. (Med.), Assoc. Prof., Head of Depart., Depart. of laboratory diagnosis
Russian Federation, 1 st. Leninskie Gory, Moscow 119991; MoscowVyacheslav I. Egorov
Ilyinskaya Hospital
Email: egorov12333@gmail.com
ORCID iD: 0000-0002-8805-7604
SPIN-code: 4487-1663
MD, Dr. Sci. (Med.), Prof., Head of Depart., Depart. hepatobiliopancreatic surgery
Russian Federation, IlyinskoyeReferences
- Bengtsson A, Andersson R, Ansari D. The actual 5-year survivors of pancreatic ductal adenocarcinoma based on real-world data. Sci Rep. 2020;10(1):16425. doi: 10.1038/S41598-020-73525-Y
- Shangina OV, Maximovich DM, Zaridze DG. Descriptive, analytical and molecular epidemiology of pancreatic cancer. Siberian Journal of Oncology. 2022;21(3):90–103. doi: 10.21294/1814-4861-2022-21-3-90-103
- Zeid HA, Salfi G, Mansour R, et al. Differentiating Between Mass-forming Chronic Pancreatitis and Pancreatic Ductal Adenocarcinoma: A Challenging Clinical Approach. International Journal of Clinical Research. 2022;3(1):292–300. doi: 10.38179/IJCR.V3I1.244
- Paklina OV, Setdikova GR, Chekmareva IA. Chronic pancreatitis or pancreatic ductal adenocarcinoma? I.P. Pavlov Russian Medical Biological Herald. 2016;(1):6–18. EDN: WCDTFX
- Kniazeva MS, Shestopalova TM, Zabegina LM, et al. Prospects of differential diagnosis of focal lesion of pancreas by the microRNA assessment. South Russian Journal of Cancer. 2023;4(3):20–35. doi: 10.37748/2686-9039-2023-4-3-3
- Chang XY, Wu Y, Li Y, et al. Intraductal papillary mucinous neoplasms of the pancreas: Clinical association with KRAS. Mol Med Rep. 2018;17(6):8061. doi: 10.3892/MMR.2018.8875
- Sagami R, Yamao K, Nakahodo J, et al. Pre-Operative Imaging and Pathological Diagnosis of Localized High-Grade Pancreatic Intra-Epithelial Neoplasia without Invasive Carcinoma. Cancers. 2021;13(5):1–23. doi: 10.3390/CANCERS13050945
- Mikhetko AA, Artemieva AS, Ivko OV, et al. Endoscopic endosonography with fine-needle aspiration biopsy in the diagnosis of pancreatic tumors. Vopr Onkol. 2021;67(3):397–404. doi: 10.37469/0507-3758-2021-67-3-397-404
- Baranova IB. Diagnosis of cystic formations of the pancreas. study of material obtained by the fine-needle biopsy. Russian News of Clinical Cytology. 2020;24(3):19–30. doi: 10.24412/1562-4943-2020-3-0004 EDN: JRUFAF
- Pkataev IA, Gladkov OA, Zagainov VE, et al. Practical guidelines for drug treatment of pancreas cancer. Malignant Tumoursis. 2021;11(3S2–1). doi: 10.18027/2224-5057-2021
- Asbun HJ, Conlon K, Fernandez-Cruz L, et al. When to perform a pancreatoduodenectomy in the absence of positive histology? A consensus statement by the International Study Group of Pancreatic Surgery. Surgery. 2014;155(5):887–892. doi: 10.1016/J.SURG.2013.12.032
- Beger HG. Benign Tumors of the Pancreas-Radical Surgery Versus Parenchyma-Sparing Local Resection-the Challenge Facing Surgeons. J Gastrointest Surg. 2018;22(3):562–566. doi: 10.1007/S11605-017-3644-2
- Khatkov IE, Poroshina EG, Solovyeva OI, et al. Diagnostics and treatment of intraductal papillary mucinous pancreas neoplasm. Ter Arkh. 2023;95(8):686–691. doi: 10.26442/00403660.2023.08.202340
- Yang Y, Ding Y, Gong Y, et al. The genetic landscape of pancreatic head ductal adenocarcinoma in China and prognosis stratification. BMC Cancer. 2022;22(1):1–12. doi: 10.1186/S12885-022-09279-9/FIGURES/2
- Hayashi A, Hong J, Iacobuzio-Donahue CA. The pancreatic cancer genome revisited. Nat Rev Gastroenterol Hepatol. 2021;18(7):469–481. doi: 10.1038/S41575-021-00463-Z
- Mas L, Lupinacci RM, Cros J, et al. Intraductal Papillary Mucinous Carcinoma Versus Conventional Pancreatic Ductal Adenocarcinoma: A Comprehensive Review of Clinical-Pathological Features, Outcomes, and Molecular Insights. Int J Mol Sci. 2021;22(13):6756. doi: 10.3390/IJMS22136756
- Bararia A, Dey S, Gulati S, et al. Differential methylation landscape of pancreatic ductal adenocarcinoma and its precancerous lesions. Hepatobiliary & Pancreatic Diseases International. 2020;19(3):205–217. doi: 10.1016/J.HBPD.2020.03.010
- Mishra NK, Guda C. Genome-wide DNA methylation analysis reveals molecular subtypes of pancreatic cancer. Oncotarget. 2017;8(17):28990. doi: 10.18632/ONCOTARGET.15993
- Trifylli EM, Kriebardis AG, Koustas E, et al. A Current Synopsis of the Emerging Role of Extracellular Vesicles and Micro-RNAs in Pancreatic Cancer: A Forward-Looking Plan for Diagnosis and Treatment. Int J Mol Sci. 2024;25(6):3406. doi: 10.3390/IJMS25063406
- Yu J, Li A, Hong SM, et al. MicroRNA alterations of pancreatic intraepithelial neoplasias. Clin Cancer Res. 2012;18(4):981–992. doi: 10.1158/1078-0432.CCR-11-2347
- Permuth-Wey J, Chen DT, Fulp WJ, et al. Plasma MicroRNAs as Novel Biomarkers for Patients with Intraductal Papillary Mucinous Neoplasms of the Pancreas. Cancer Prev Res. 2015;8(9):826. doi: 10.1158/1940-6207.CAPR-15-0094
- Nicoletti A, Vitale F, Quero G, et al. Immunohistochemical Evaluation of the Expression of Specific Membrane Antigens in Patients with Pancreatic Ductal Adenocarcinoma. Cancers. 2023;15(18):4586. doi: 10.3390/CANCERS15184586/S1
- Guo J, Xie K, Zheng S. Molecular Biomarkers of Pancreatic Intraepithelial Neoplasia and Their Implications in Early Diagnosis and Therapeutic Intervention of Pancreatic Cancer. Int J Biol Sci. 2016;12(3):292–301. doi: 10.7150/IJBS.14995
- Freed IM, Kasi A, Fateru O, et al. Circulating Tumor Cell Subpopulations Predict Treatment Outcome in Pancreatic Ductal Adenocarcinoma (PDAC) Patients. Cells. 2023;12(18):2266. doi: 10.3390/CELLS12182266/S1
- Stejskal P, Goodarzi H, Srovnal J, et al. Circulating tumor nucleic acids: biology, release mechanisms, and clinical relevance. Molecular Cancer. 2023;22(1):1–21. doi: 10.1186/S12943-022-01710-W
- Faria G, Silva E, Da Fonseca C, Quirico-Santos T. Circulating Cell-Free DNA as a Prognostic and Molecular Marker for Patients with Brain Tumors under Perillyl Alcohol-Based Therapy. Int J Mol Sci. 2018;19(6). doi: 10.3390/IJMS19061610
- Underhill HR. Leveraging the Fragment Length of Circulating Tumour DNA to Improve Molecular Profiling of Solid Tumour Malignancies with Next-Generation Sequencing: A Pathway to Advanced Non-invasive Diagnostics in Precision Oncology? Mol Diagn Ther. 2021;25(4):389. doi: 10.1007/S40291-021-00534-6
- Wu J, Zhou Y, Zhang CY, et al. Co-amplification at lower denaturation-temperature PCR combined with unlabled-probe high-resolution melting to detect KRAS codon 12 and 13 mutations in plasma-circulating DNA of pancreatic adenocarcinoma cases. Asian Pac J Cancer Prev. 2014;15(24):10647–10652. doi: 10.7314/APJCP.2014.15.24.10647
- Berger AW, Schwerdel D, Costa IG, et al. Detection of Hot-Spot Mutations in Circulating Cell-Free DNA From Patients with Intraductal Papillary Mucinous Neoplasms of the Pancreas. Gastroenterology. 2016;151(2):267–270. doi: 10.1053/J.GASTRO.2016.04.034
- Kirchweger P, Kupferthaler A, Burghofer J, et al. Prediction of response to systemic treatment by kinetics of circulating tumor DNA in metastatic pancreatic cancer. Front Oncol. 2022;12:902177. doi: 10.3389/FONC.2022.902177
- Cohen JD, Javed AA, Thoburn C, et al. Combined circulating tumor DNA and protein biomarker-based liquid biopsy for the earlier detection of pancreatic cancers. Proc Natl Acad Sci USA. 2017;114(38):10202–10207. doi: 10.1073/PNAS.1704961114
- Affolter KE, Hellwig S, Nix DA, et al. Detection of circulating tumor DNA without a tumor-informed search using next-generation sequencing is a prognostic biomarker in pancreatic ductal adenocarcinoma. Neoplasia. 2021;23(9):859. doi: 10.1016/J.NEO.2021.06.005
- Watanabe K, Nakamura T, Kimura Y, et al. Tumor-Informed Approach Improved ctDNA Detection Rate in Resected Pancreatic Cancer. Int J Mol Sci. 2022;23(19):11521. doi: 10.3390/IJMS231911521/S1
- Wang R, Zhao Y, Wang Y, et al. Diagnostic and Prognostic Values of KRAS Mutations on EUS-FNA Specimens and Circulating Tumor DNA in Patients with Pancreatic Cancer. Clin Transl Gastroenterol. 2022;13(5):e00487. doi: 10.14309/CTG.0000000000000487
- Levink IJM, Jansen MPHM, Azmani Z, et al. Mutation Analysis of Pancreatic Juice and Plasma for the Detection of Pancreatic Cancer. Int J Mol Sci. 2023;24(17):13116. doi: 10.3390/IJMS241713116
- Volckmar AL, Endris V, Gaida MM, et al. Next generation sequencing of the cellular and liquid fraction of pancreatic cyst fluid supports discrimination of IPMN from pseudocysts and reveals cases with multiple mutated driver clones: First findings from the prospective ZYSTEUS biomarker study. Genes Chromosomes Cancer. 2019;58(1):3–11. doi: 10.1002/GCC.22682
- Choi MH, Mejlænder-Andersen E, Manueldas S, et al. Mutation analysis by deep sequencing of pancreatic juice from patients with pancreatic ductal adenocarcinoma. BMC Cancer. 2019;19(1):1–12. doi: 10.1186/S12885-018-5195-7
- Jain M, Atayan D, Rakhmatullin T, et al. Cell-Free Tumor DNA Detection-Based Liquid Biopsy of Plasma and Bile in Patients with Various Pancreatic Neoplasms. Biomedicines. 2024;12(1):220. doi: 10.3390/BIOMEDICINES12010220
- Shinjo K, Hara K, Nagae G, et al. A novel sensitive detection method for DNA methylation in circulating free DNA of pancreatic cancer. PLoS One. 2020;15(6):e0233782. doi: 10.1371/JOURNAL.PONE.0233782
- Yi JM, Guzzetta AA, Bailey VJ, et al. Novel methylation biomarker panel for the early detection of pancreatic cancer. Clin Cancer Res. 2013;19(23):6544–6555. doi: 10.1158/1078-0432.CCR-12-3224
- Eissa MAL, Lerner L, Abdelfatah E, et al. Promoter methylation of ADAMTS1 and BNC1 as potential biomarkers for early detection of pancreatic cancer in blood. Clin Epigenetics. 2019;11(1):59. doi: 10.1186/S13148-019-0650-0
- Wu H, Guo S, Liu X, et al. Noninvasive detection of pancreatic ductal adenocarcinoma using the methylation signature of circulating tumour DNA. BMC Med. 2022;20(1):1–17. doi: 10.1186/S12916-022-02647-Z/TABLES/3
- Liggett T, Melnikov A, Yi QL, et al. Differential methylation of cell-free circulating DNA among patients with pancreatic cancer versus chronic pancreatitis. Cancer. 2010;116(7):1674–1680. doi: 10.1002/CNCR.24893
- Wu Y, Seufert I, Al-Shaheri FN, et al. DNA-methylation signature accurately differentiates pancreatic cancer from chronic pancreatitis in tissue and plasma. Gut. 2023;72(12):2344–2353. doi: 10.1136/GUTJNL-2023-330155
- Majumder S, Raimondo M, Taylor WR, et al. Methylated DNA in Pancreatic Juice Distinguishes Patients with Pancreatic Cancer From Controls. Clin Gastroenterol Hepatol. 2020;18(3):676. doi: 10.1016/J.CGH.2019.07.017
- Yokoyama S, Kitamoto S, Higashi M, et al. Diagnosis of Pancreatic Neoplasms Using a Novel Method of DNA Methylation Analysis of Mucin Expression in Pancreatic Juice. PLoS One. 2014;9(4):93760. doi: 10.1371/JOURNAL.PONE.0093760
- Que R, Ding G, Chen J, Cao L. Analysis of serum exosomal microRNAs and clinicopathologic features of patients with pancreatic adenocarcinoma. World J Surg Oncol. 2013;11:219. doi: 10.1186/1477-7819-11-219
- Zou X, Wei J, Huang Z, et al. Identification of a six-miRNA panel in serum benefiting pancreatic cancer diagnosis. Cancer Med. 2019;8(6):2810–2822. doi: 10.1002/CAM4.2145
- Lai X, Wang M, McElyea SD, et al. A microRNA signature in circulating exosomes is superior to exosomal glypican-1 levels for diagnosing pancreatic cancer. Cancer Lett. 2017;393:86–93. doi: 10.1016/J.CANLET.2017.02.019
- Xu C, Jun E, Okugawa Y, et al. A Circulating Panel of circRNA Biomarkers for the Noninvasive and Early Detection of Pancreatic Ductal Adenocarcinoma. Gastroenterology. 2024;166(1):178–190.e16. doi: 10.1053/J.GASTRO.2023.09.050
- Cao Z, Liu C, Xu J, et al. Plasma microRNA panels to diagnose pancreatic cancer: Results from a multicenter study. Oncotarget. 2016;7(27):41575–41583. doi: 10.18632/ONCOTARGET.9491
- Guo S, Qin H, Liu K, et al. Blood small extracellular vesicles derived miRNAs to differentiate pancreatic ductal adenocarcinoma from chronic pancreatitis. Clin Transl Med. 2021;11(9):11. doi: 10.1002/CTM2.520
- Vicentini C, Calore F, Nigita G, et al. Exosomal miRNA signatures of pancreatic lesions. BMC Gastroenterol. 2020;20(1):1–11. doi: 10.1186/S12876-020-01287-Y/FIGURES/4
- Nesteruk K, Levink IJM, de Vries E, et al. Extracellular vesicle-derived microRNAs in pancreatic juice as biomarkers for detection of pancreatic ductal adenocarcinoma. Pancreatology. 2022;22(5):626–635. doi: 10.1016/J.PAN.2022.04.010
- Permuth-Wey J, Chen DT, Fulp WJ, et al. Plasma MicroRNAs as Novel Biomarkers for Patients with Intraductal Papillary Mucinous Neoplasms of the Pancreas. Cancer Prev Res. 2015;8(9):826. doi: 10.1158/1940-6207.CAPR-15-0094
- Kuratomi N, Takano S, Fukasawa M, et al. MiR-10a in Pancreatic Juice as a Biomarker for Invasive Intraductal Papillary Mucinous Neoplasm by miRNA Sequencing. Int J Mol Sci. 2021;22(6):1–12. doi: 10.3390/IJMS22063221
- Liu H, Sun B, Wang S, et al. Circulating Tumor Cells as a Biomarker in Pancreatic Ductal Adenocarcinoma. Cell Physiol Biochem. 2017;42(1):373–382. doi: 10.1159/000477481
- Ankeny JS, Court CM, Hou S, et al. Circulating tumour cells as a biomarker for diagnosis and staging in pancreatic cancer. Br J Cancer. 2016;114(12):1367–1375. doi: 10.1038/BJC.2016.121
- Dotan E, Alpaugh RK, Ruth K, et al. Prognostic Significance of MUC-1 in Circulating Tumor Cells in Patients with Metastatic Pancreatic Adenocarcinoma. Pancreas. 2016;45(8):1131–1135. doi: 10.1097/MPA.0000000000000619
- Kuvendjiska J, Müller F, Bronsert P, et al. Circulating Epithelial Cells in Patients with Intraductal Papillary Mucinous Neoplasm of the Pancreas. Life. 2023;13(7):1570. doi: 10.3390/life13071570
- Buscail E, Alix-Panabières C, Quincy P, et al. High Clinical Value of Liquid Biopsy to Detect Circulating Tumor Cells and Tumor Exosomes in Pancreatic Ductal Adenocarcinoma Patients Eligible for Up-Front Surgery. Cancers. 2019;11(11):1656. doi: 10.3390/CANCERS11111656
- Kitagawa K, Mitoro A, Tomooka F, et al. Diagnostic yield of liquid-based cytology in serial pancreatic juice aspiration cytological examination. DEN open. 2022;3(1):e177. doi: 10.1002/DEO2.177
- Tag-Adeen M, Ozawa E, Ogihara K, et al. The role of pancreatic juice cytology in the diagnosis of pancreatic intraductal papillary mucinous neoplasm. Revista espanola de enfermedades digestivas. 2018;110(12):775–781. doi: 10.17235/REED.2018.5564/2018
- Miyamoto K, Matsumoto K, Kato H, et al. The efficacy of pancreatic juice cytology with liquid-based cytology for evaluating malignancy in patients with intraductal papillary mucinous neoplasm. BMC Gastroenterol. 2020;20(1):319. doi: 10.1186/S12876-020-01465-Y
- Özcan Ö, Arikan S. Determining the Risk Factors of Complications Due to Endoscopic Retrograde Cholangiopancreatography. Cureus. 2024;16(1):e51666. doi: 10.7759/CUREUS.51666
- Sorber L, Zwaenepoel K, Deschoolmeester V, et al. A Comparison of Cell-Free DNA Isolation Kits: Isolation and Quantification of Cell-Free DNA in Plasma. The Journal of Molecular Diagnostics. 2017;19(1):162–168. doi: 10.1016/J.JMOLDX.2016.09.009
- Taylor SC, Laperriere G, Germain H. Droplet Digital PCR versus qPCR for gene expression analysis with low abundant targets: from variable nonsense to publication quality data. Scientific Reports. 2017;7(1):1–8. doi: 10.1038/s41598-017-02217-x
- Cheng YW, Stefaniuk C, Jakubowski MA. Real-time PCR and targeted next-generation sequencing in the detection of low level EGFR mutations: Instructive case analyses. Respir Med Case Rep. 2019;28:100901. doi: 10.1016/J.RMCR.2019.100901
- Hong SR, Shin KJ. Bisulfite-Converted DNA Quantity Evaluation: A Multiplex Quantitative Real-Time PCR System for Evaluation of Bisulfite Conversion. Front Genet. 2021;12:618955. doi: 10.3389/FGENE.2021.618955/BIBTEX
- Martisova A, Holcakova J, Izadi N, et al. DNA Methylation in Solid Tumors: Functions and Methods of Detection. Int J Mol Sci. 2021;22(8):4247. doi: 10.3390/IJMS22084247
- Methylation-sensitive restriction enzymes (MSREs). Accessed February 23, 2024. https://www.takarabio.com/us/products/cell_biology_and_epigenetics/epigenetics/dna_preparation/msre_overview
Supplementary files
