Cellular mechanisms of age-dependent bone remodeling

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The structural integrity of the skeleton is ensured by the constant remodeling of bone tissue, which is based on the functioning and interaction of osteolytic cells (osteoclasts) and bone tissue forming cells (osteoblasts/osteocytes). Despite the general understanding that the degree of mineralization of the bone matrix determines the fragility of the skeleton, there is currently insufficient information about its age-related changes associated with the functioning of these cells. The purpose of the review is to evaluate existing data on age-related bone changes associated with the functional state of mesenchymal stem cells, osteoblasts/osteocytes and osteoclasts. Inclusion criteria: randomized or non-randomized controlled studies examining age-related bone change. A search for studies in the field of bone tissue condition was carried out in electronic scientific databases Google Scholar, Medline, PubMed, Scopus, Web of Science and Cochrane Library by keywords and their combinations using the AMSTAR 2 program. The selection of publications (59 out of 680 included) was carried out randomly, after which three authors independently assessed their methodological quality. The main pathogenetic mechanism involved in bone loss with age is a decrease in the formation of osteoblasts with impairment of their ability to osteogenic differentiation. Osteocytes in old age are subject to excessive and prolonged stress, which causes unbalanced autophagy and apoptosis, which leads to changes in their ability to deposit and mineralize extracellular organic matrix. With age, accelerated osteoclastogenesis occurs, mediated by osteoblasts, which leads to increased expression of certain receptors at the level of bone stromal cells and osteoblasts. The presented literature data demonstrate convincing evidence that an increase in bone resorption due to complex metabolic processes with age occurs against the background of an increase in the number and activity of osteoclasts, apoptosis of osteoblasts with a decrease in their metabolic activity, as well as a redistribution of osteogenic differentiation of mesenchymal stem cells towards adipocytes. The results presented in the review can be used as a basis for developing diagnostic criteria for identifying senile osteoporosis and the risk of fractures.

About the authors

Natalya G. Plekhova

Pacific State Medical University

Author for correspondence.
Email: pl_nat@hotmail.com
ORCID iD: 0000-0002-8701-7213
SPIN-code: 2685-9578

Dr. Sci. (Biol.), Assoc. Prof., Head, Interdisciplinary Research Center

Russian Federation, Vladivostok

Polina A. Krivolutskaya

Pacific State Medical University

Email: vpo12345@mail.ru
ORCID iD: 0009-0002-5900-3938

Graduate Student, Interdisciplinary Research Center

Russian Federation, Vladivostok

Ivan N. Chernenko

Pacific State Medical University

Email: chernencrj2010@mail.ru
ORCID iD: 0000-0001-5261-810X
SPIN-code: 7872-1554

Junior Researcher, Interdisciplinary Research Center

Russian Federation, Vladivostok

References

  1. Gantman AA, Gorblyansky YuYu, Kontorovich EP, Ponamareva OP. The concept of healthy aging at work. Medical Herald of the South of Russia. 2022;13(4):5–13. (In Russ.) doi: 10.21886/2219-8075-2022-13-4-5-13
  2. Fang H, Deng Z, Liu J, Chen S, Deng Z, Li W. The mechanism of bone remodeling after bone aging. Clin Interv Aging. 2022;17:405–415. doi: 10.2147/CIA.S349604
  3. Fernandez-Gonzalez FJ, Canigral A, López-Caballo JL, Brizuela A, Cobo T, de Carlos F, Suazo I, Pérez-González Y, Vega JA. Recombinant osteoprotegerin effects during orthodontic movement in a rat model. Eur J Orthodontics. 2016;38(4):379–385. doi: 10.1093/ejo/cjv056
  4. Jahani B, Vaidya R, Jin JM, Aboytes DA, Broz KS, Khrotapalli S, Pujari B, Baig WM, Tang SY. Assessment of bovine cortical bone fracture behavior using impact microindentation as a surrogate of fracture toughness. JBMR Plus. 2024;8(2):ziad012. doi: 10.1093/jbmrpl/ziad012
  5. Rosenberg JL, Woolley W, Elnunu I, Kamml J, Kammer DS, Acevedo C. Effect of non-enzymatic glycation on collagen nanoscale mechanisms in diabetic and age-related bone fragility. Biocell. 2023;47(7):1651–1659. doi: 10.32604/biocell.2023.028014
  6. Papastavrou A, Schmidt I, Deng K, Steinmann P. On age-dependent bone remodeling. J Biomech. 2020;103:109701. doi: 10.1016/j.jbiomech.2020.109701
  7. Zimmermann EA, Schaible E, Bale H, Barth HD, Tang SY, Reichert P, Busse B, Alliston T, Ager JW. Age-related changes in the plasticity and toughness of human cortical bone at multiple length scales. Proc Natl Acad Sci USA. 2011;108:14416–14421. doi: 10.1073/pnas.1107966108
  8. Morgan EF, Unnikrisnan GU, Hussein AI. Bone mechanical properties in healthy and diseased states. Annu Rev Biomed Eng. 2018;20:119–143. doi: 10.1146/annurevbioeng-062117-121139
  9. Koester K, Barth H, Ritchie R. Effect of aging on the transverse toughness of human cortical bone: Evaluation by R-curves. J Mech Beh Biomed Materials. 2011;4:1504–1513. doi: 10.1016/j.jmbbm.2011.05.020
  10. Garnero P. The contribution of collagen crosslinks to bone strength. Bonekey Rep. 2012;182:10. doi: 1038/bonekey.2012.182
  11. Zimmermann EA, Schaible E, Gludovatz B, Schmidt FN, Riedel C, Krause M, Vettorazzi E, Acevedo C, Hahn M, Püschel K, Tang S, Amling M, Ritchie RO, Busse B. Intrinsic mechanical behavior of femoral cortical bone in young, osteoporotic and bisphosphonate-treated individuals in low-and high energy fracture conditions. Sci Rep. 2016:1–12. doi: 10.1038/srep21072
  12. Burr DB. Changes in bone matrix properties with aging. Bone. 2019;120:85–93. doi: 10.1016/j.bone.2018.10.010
  13. Liu H, Jiang H, Liu X, Wang X. Physicochemical understanding of biomineralization by molecular vibrational spectroscopy: From mechanism to nature. Exploration (Beijing). 2023;3(6):20230033. doi: 10.1002/EXP.20230033
  14. Pienkowski D, Wood CL, Malluche HH. Trabecular bone microcrack accumulation in patients treated with bisphosphonates for durations up to 16 years. J Orthop Res. 2023;41(5):1033–1039. doi: 10.1002/jor.25441
  15. Wang X, Hua R, Ahsan A, Ni Q, Huang Y, Gu S, Jiang JX. Age-related deterioration of bone toughness is related to diminishing amount of matrix glycosaminoglycans (Gags). JBMR. 2018;2:164–173. doi: 10.1002/jbm4.10030
  16. Poundarik AA, Boskey A, Gundberg C, Vashishth D. Biomolecular regulation, composition and nanoarchitecture of bone mineral. Sci Rep. 2018;8:1191. doi: 10.1038/s41598-018-19253-w
  17. Qin L, Liu W, Cao H, Xiao G. Molecular mechanosensors in osteocytes. Bone Res. 2020;8:23. doi: 10.1038/s41413-020-0099-y
  18. Lai P, Song Q, Yang C, Lai P, Song Q, Yang C, Li Z, Liu S, Liu B, Li M, Deng H, Cai D, Jin D, Liu A, Bai X. Loss of Rictor with aging in osteoblasts promotes age-related bone loss. Cell Death Dis. 2016;7(10):e2408. doi: 10.1038/cddis.2016.249
  19. Creecy A, Damrath JG, Wallace JM. Control of bone matrix properties by osteocytes. Front Endocrinol (Lausanne). 2021;11:578477. doi: 10.3389/fendo.2020
  20. Zhang C, Xu S, Zhang S, Liu M, Du H, Sun R, Jing B, Sun Y. Ageing characteristics of bone indicated by transcriptomic and exosomal proteomic analysis of cortical bone cells. J Orthop Surg Res. 2019;14(1):129. doi: 10.1186/s13018-019-1163-4
  21. Siddiqui JA, Partridge NC. Physiological bone remodeling: systemic regulation and growth factor involvement. Physiology (Bethesda). 2016;31(3):233–245. doi: 10.1152/physiol.00061.2014
  22. Šromová V, Sobola D, Kaspar P. A brief review of bone cell function and importance. Cells. 2023;12(21):2576. doi: 10.3390/cells12212576
  23. Katsimbri P. The biology of normal bone remodeling. Eur J Cancer Care (Engl). 2017;26(6):128–132. doi: 10.1111/ecc.12740
  24. Forte YS, Renovato-Martins M, Barja-Fidalgo C. Cellular and molecular mechanisms associating obesity to bone loss. Cells. 2023;12(4):521. doi: 10.3390/cells12040521
  25. Rowe P, Koller A, Sharma S. Physiology, bone remodeling. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2024. PMID: 29763038
  26. Almeida M. Aging mechanisms in bone. Bonekey Rep. 2012;1:102. doi: 10.1038/bonekey.2012.102
  27. Guyan F, Gianduzzo E, Waltenspül M, Dietrich M, Kabelitz M. Cortical thickness index and canal calcar ratio: A comparison of proximal femoral fractures and non-fractured femora in octogenarians to centenarians. J Clin Med. 2024;13(4):981. doi: 10.3390/jcm13040981
  28. Chan CKF, Gulati GS, Sinha R, Chan CKF, Gulati GS, Sinha R, Tompkins JV, Lopez M, Carter AC, Ransom RC, Reinisch A, Wearda T, Murphy M, Brewer RE, Koepke LS, Marecic O, Manjunath A, Seo EY, Leavitt T, Lu WJ, Nguyen A, Conley SD, Salhotra A, Ambrosi TH, Borrelli MR, Siebel T, Chan K, Schallmoser K, Seita J, Sahoo D, Goodnough H, Bishop J, Gardner M, Majeti R, Wan DC, Goodman S, Weissman IL, Chang HY, Longaker MT. Identification of the human skeletal stem cell. Cell. 2018;175(1):43-56.e21. doi: 10.1016/j.cell.2018.07.029
  29. Cardoneanu A, Rezus C, Tamba BI, Rezus E. Bone cells metabolic changes induced by ageing. Subcell Biochem. 2023;103:13–29. doi: 10.1007/978-3-031-26576-1_2
  30. Paccou J, Penel G, Chauveau C, Cortet B, Hardouin P. Marrow adiposity and bone: Review of clinical implications. Bone. 2019;118:8–15. doi: 10.1016/j.bone.2018.02.008
  31. Qadir A, Liang S, Wu Z, Chen Z, Hu L, Qian A. Senile osteoporosis: The involvement of differentiation and senescence of bone marrow stromal cells. Int J Mol Sci. 2020;21:349. doi: 10.3390/ijms21010349
  32. Al Saedi A, Bermeo S, Plotkin L, Myers DE, Duque G. Mechanisms of palmitate-induced lipotoxicity in osteocytes. Bone. 2019;127:353–359. doi: 10.1016/j.bone.2019.06.016
  33. Yu B, Huo L, Liu Y, Deng P, Szymanski J, Li J, Luo X, Hong C, Lin J, Wang CY. PGC-1α controls skeletal stem cell fate and bone-fat balance in osteoporosis and skeletal aging by inducing TAZ. Cell Stem Cell. 2018;23:615–623. doi: 10.1016/j.stem.2018.09.001
  34. Wang H, Chen Q, Lee SH, Choi Y, Johnson FB, Pignolo RJ. Impairment of osteoblast differentiation due to proliferation-independent telomere dysfunction in mouse models of accelerated aging. Aging Cell. 2012;11:704–713. doi: 10.1111/j.1474-9726.2012.00838.x
  35. Hoover MY, Ambrosi TH, Steininger HM, Koepke LS, Wang Y, Zhao L, Murphy MP, Alam AA, Arouge EJ, Butler MGK, Takematsu E, Stavitsky SP, Hu S, Sahoo D, Sinha R, Morri M, Neff N, Bishop J, Gardner M, Goodman S, Longaker M, Chan CKF. Purification and functional characterization of novel human skeletal stem cell lineages. Nat Protoc. 2023;18(7):2256–2282. doi: 10.1038/s41596-023-00836-5
  36. Tjempakasari A, Suroto H, Santoso D. Mesenchymal stem cell senescence and osteogenesis. Medicina (Kaunas). 2021;58(1):61. doi: 10.3390/medicina58010061
  37. Li W, Jiang WS, Su YR, Tu KW, Zou L, Liao CR, Wu Q, Wang ZH, Zhong ZM, Chen JT, Zhu SY. PINK1/Parkin-mediated mitophagy inhibits osteoblast apoptosis induced by advanced oxidation protein products. Cell Death Dis. 2023;14(2):88. doi: 10.1038/s41419-023-05595-5
  38. Palumbo C, Ferretti M. The osteocyte: From “prisoner” to “orchestrator”. J Funct Morphol Kinesiol. 2021;6(1):28. doi: 10.3390/jfmk6010028
  39. Ferretti M, Palumbo C. Static osteogenesis versus dynamic osteogenesis: A comparison between two different types of bone formation. Applied Sciences. 2021;11(5):2025. doi: 10.3390/app11052025
  40. Tresguerres FGF, Torres J, López-Quiles J, Hernández G, Vega JA, Tresguerres IF. The osteocyte: A multifunctional cell within the bone. Ann Anat. 2020;227:151422. doi: 10.1016/j.aanat.2019.151422
  41. Corrado A, Cici D, Rotondo C, Maruotti N, Cantatore FP. Molecular basis of bone aging. Int J Mol Sci. 2020;21(10):3679. doi: 10.3390/ijms21103679
  42. Dallas SL, Prideaux M, Bonewald LF. The osteocyte: An endocrine cell and more. Endocr Rev. 2013;34(5):658–690. doi: 10.1210/er.2012-1026
  43. Kitase Y, Prideaux M. Targeting osteocytes vs osteoblasts. Bone. 2023;170:116724. doi: 10.1016/j.bone.2023.116724
  44. Tsourdi E, Jähn K, Rauner M, Busse B, Bonewald LF. Physiological and pathological osteocytic osteolysis. J Musculoskelet Neuronal Interact. 2018;18(3):292–303. PMID: 30179206
  45. Kogawa M, Wijenayak AR, Ormsby R, Kogawa M, Wijenayaka AR, Ormsby RT, Thomas GP, Anderson PH, Bonewald LF, Findlay DM, Atkins GJ. Sclerostin regulates release of bone mineral by osteocytes by induction of carbonic anhydrase 2. J Bone Miner Res. 2013;28:2436–2448. doi: 10.1002/jbmr.2003
  46. Shiflett LA, Tiede-Lewis LM, Xie Y, Lu Y, Ray EC, Dallas SL. Collagen dynamics during the process of osteocyte embedding and mineralization. Front Cell Dev Biol. 2019;7:178. doi: 10.3389/fcell.2019.00178
  47. Cui J, Shibata Y, Zhu T, Zhou J, Zhang J. Osteocytes in bone aging: Advances, challenges, and future perspectives. Ageing Res Rev. 2022;77:101608. doi: 10.1016/j.arr.2022.101608
  48. Milovanovic P, Busse B. Phenomenon of osteocyte lacunar mineralization: Indicator of former osteocyte death and a novel marker of impaired bone quality? Endocr Connect. 2020;9(4):R70–R80. doi: 10.1530/EC-19-0531
  49. Zhu C, Shen S, Zhang S, Huang M, Zhang L, Chen X. Autophagy in bone remodeling: A regulator of oxidative stress. Front Endocrinol (Lausanne). 2022;13:898634. doi: 10.3389/fendo.2022.898634
  50. Plotkin LI. Apoptotic osteocytes and the control of targeted bone resorption. Curr Osteoporos Rep. 2014;12:121–126. doi: 10.1007/s11914-014-0194-3
  51. Daponte V, Henke K, Drissi H. Current perspectives on the multiple roles of osteoclasts: Mechanisms of osteoclast-osteoblast communication and potential clinical implications. Elife. 2024;13:e95083. doi: 10.7554/eLife.95083
  52. Boyce BF. Advances in the regulation of osteoclasts and osteoclast functions. J Dent Res. 2013;92(10):860–867. doi: 10.1177/0022034513500306
  53. Teti A. Mechanisms of osteoclast-dependent bone formation. Bonekey Rep. 2013;2:449. doi: 10.1038/bonekey.2013.183
  54. Borggaard XG, Nielsen MH, Delaisse JM, Andreasen CM, Andersen TL. Spatial organization of osteoclastic coupling factors and their receptors at human bone remodeling sites. Front Mol Biosci. 2022;9:896841. doi: 10.3389/fmolb.2022.896841
  55. Kabalyk MA. Biomarkers of subchondral bone remodeling in osteoarthritis. Pacific Medical Journal. 2017;(1):36–41. (In Russ.) doi: 10.17238/PmJ1609-1175.2017.1.37-41
  56. Sautchuk JrR, Eliseev RA. Cell energy metabolism and bone formation. Bone Rep. 2022;16:101594. doi: 10.1016/j.bonr.2022.101594
  57. Omi M, Mishina Y. Roles of osteoclasts in alveolar bone remodeling. Genesis. 2022;60(8–9):e23490. doi: 10.1002/dvg.23490
  58. Yao Z, Getting SJ, Locke IC. Regulation of TNF-induced osteoclast differentiation. Cells. 2021;11(1):132. doi: 10.3390/cells11010132
  59. Wang X, Yamauchi K, Mitsunaga T. A review on osteoclast diseases and osteoclastogenesis inhibitors recently developed from natural resources. Fitoterapia. 2020;142:104482. doi: 10.1016/j.fitote.2020.104482
  60. Marques-Carvalho A, Kim HN, Almeida M. The role of reactive oxygen species in bone cell physiology and pathophysiology. Bone Rep. 2023;19:101664. doi: 10.1016/j.bonr.2023.101664

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Phases of the bone remodeling cycle

Download (242KB)
3. Fig. 2. The main changes in bone cells that occur in old age; ATP — adenosine triphosphate

Download (231KB)

© 2024 Eco-Vector





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies