Induction of apoptosis and autophagy in T-lymphocytes of patients with Systemic Lupus Erythematosus

Cover Page

Cite item

Abstract

Aim. To analyze the expression of key apoptosis (Bcl-2, caspase-3) and autophagy (Beclin 1, Vps34, p62 and LC3) proteins regulators in peripheral blood T-lymphocytes of patients with systemic lupus erythematosus.

Methods. The object of the study was peripheral blood T-lymphocytes of healthy donors and patients with systemic lupus erythematosus. To obtain T cells, we used the immunomagnetic separation method. Protein expression was analyzed using the Western blot method. Statistically analyzing the results was performed using the R software environment. The data was represented using boxplots. Groups were compared using the Mann–Whitney test.

Results. According to the results of the study of the apoptotic proteins, we found an increased content of caspase-3 and the absence of significant changes in the content of the anti-apoptotic protein Bcl-2 in patients with lupus, which indicates active apoptotic activity. A comparative analysis of Beclin 1 and Vps34 showed their increased content in the cells of patients, which indicates the activation of autophagy. The analysis of two isoforms of LC3 protein revealed their low content in the group of patients. Since the scatter of indicators was very different from the average value, we analyzed these indicators depending on the severity of the disease. In the acute course group, high content of protein LC3-I was detected, the content of form II was lower. In the group with the subacute course, the number of both isoforms is lower than in the other groups. In the group with a chronic course, significant increases of protein LC3-II and a decrease in the ratio of LC3-I/LC3-II were found.

Conclusion. The study showed that depending on the severity of systemic lupus erythematosus, the content of protein LC3 isoforms changes, which can be used for differential diagnosis of disease forms.

About the authors

Y V Skibo

Kazan (Volga Region) Federal University

Author for correspondence.
Email: yuliya_ksu@mail.ru
SPIN-code: 3727-5511
Russian Federation, Kazan, Russia

A R Fathullina

Kazan (Volga Region) Federal University

Email: yuliya_ksu@mail.ru
SPIN-code: 8511-6349
Russian Federation, Kazan, Russia

B R Ibragimov

Kazan (Volga Region) Federal University

Email: yuliya_ksu@mail.ru
Russian Federation, Kazan, Russia

S N Abramov

Kazan (Volga Region) Federal University

Email: yuliya_ksu@mail.ru
ORCID iD: 0000-0003-3174-4363
SPIN-code: 1489-1208
Scopus Author ID: 56595507300
ResearcherId: A-2414-2019
Russian Federation, Kazan, Russia

R R Ismagilova

Kazan State Medical University

Email: yuliya_ksu@mail.ru
Russian Federation, Kazan, Russia

E M Biktagirova

Kazan (Volga Region) Federal University

Email: yuliya_ksu@mail.ru
Russian Federation, Kazan, Russia

I A Andrianova

Kazan (Volga Region) Federal University

Email: yuliya_ksu@mail.ru
Russian Federation, Kazan, Russia

A N Maksudova

Kazan State Medical University

Email: yuliya_ksu@mail.ru
Russian Federation, Kazan, Russia

Z I Abramova

Kazan (Volga Region) Federal University

Email: yuliya_ksu@mail.ru
Russian Federation, Kazan, Russia

References

  1. Mesnyankina A.A. Cellular and molecular biomarkers and potential therapeutic targets in systemic lupus erythematosus. Rheumatology ­Science and Practice. 2016; 54 (2): 206–218. (In Russ.) doi: 10.14412/1995-4484-2016-206-218.
  2. Revmatologiya. Natsional’noe rukovodstvo. (Rheumatology. National guidelines.) Ed. by E.L. Nasonov, V.A. Nasonova. M.: GEOTAR-Media. 2008; 720 р.
  3. Ivanova V.V., Khaiboullina S.F., Cherenkova E.E. et al. Differential immuno-reactivity to genomic DNA, RNA and mitochondrial DNA is associated with auto-immunity. Cell. Physiol. Biochem. 2014; 34 (6): 2200–2208. doi: 10.1159/000369663.
  4. Katsuyama T., Tsokos G.C., Moulton V.R. Aberrant T cell signaling and subsets in systemic lupus erythematosus. Front Immunol. 2018; 9: 1088. doi: 10.3389/fimmu.2018.01088.
  5. Moulton V.R., Tsokos G.C. Abnormalities of T cell signaling in systemic lupus erythematosus. Arthritis Res. Ther. 2011; 13: 207. doi: 10.1186/ar3251.
  6. Wang H., Xu J., Ji X. et al. The abnormal apoptosis of T cell subsets and possible involvement of IL-10 in syste­mic lupus erythematosus. Cell. Immunol. 2005; 235: 117–121. doi: 10.1016/j.cellimm.2005.08.031.
  7. Yang F., Yi H., Zhai Z., Sun E. Programmed cell death pathways in the pathogenesis of systemic lupus ery­thematosus. J. Immunol. Res. 2019; (6): 1–13. doi: 10.1155/2019/3638562.
  8. Gaipl U.S., Munoz L.E., Grossmayer G. et al. Clearance deficiency and systemic lupus erythematosus (SLE). J. Autoimmun. 2007; 28: 114–121. doi: 10.1016/j.jaut.2007.02.005.
  9. Pua H.H., He Y.W. Maintaining T lymphocyte homeostasis: another duty of autophagy. Autophagy. 2007; 3: 266–267. doi: 10.4161/auto.3908.
  10. Li C., Capan E., Zhao Y. et al. Autophagy is induced in CD4+ T cells and important for the growth factor-withdrawal cell death. J. Immunol. 2006; 177: 5163–5168. doi: 10.4049/jimmunol.177.8.5163.
  11. Walsh C.M., Edinger A.L. The complex interplay between autophagy, apoptosis, and necrotic signals promotes T-cell homeostasis. Immunol. Rev. 2010; 236: 95–109. doi: 10.1111/j.1600-065X.2010.00919.x.
  12. Gerland L.M., Genestier L., Peyrol S. et al. Auto­lysosomes accumulate during in vitro CD8+ T-lymphocyte aging and may participate in induced death sensitization of senescent cells. Exp. Gerontol. 2004; 39: 789–800. doi: 10.1016/j.exger.2004.01.013.
  13. Kuma A., Hatano M., Matsui M. et al. The role of autophagy during the early neonatal starvation period. Nature. 2004; 432: 1032–1036. doi: 10.1038/nature03029.
  14. Kamada Y., Sekito T., Ohsumi Y. Autophagy in yeast: aTOR-mediated response to nutrient starvation. Curr. Top. Microbiol. Immunol. 2004; 279; 73–84. doi: 10.1007/978-3-642-18930-2_5.
  15. Lum J.J., Bauer D.E., Kong M. et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell. 2005; 120: 237–248. doi: 10.1016/­j.cell.2004.11.046.
  16. Tanida I., Ueno T., Kominami E. LC3 conjugation system in mammalian autophagy. Int. J. Biochem. Cell Biol. 2004; 36: 2503–2518. doi: 10.1016/j.biocel.2004.05.009.
  17. Levine B., Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008; 132: 27–42. doi: 10.1016/j.cell.2007.12.018.
  18. Gros F., Arnold J., Page N. et al. Macroautophagy is deregulated in murine and human lupus T lymphocytes. Autophagy. 2012; 8: 1113–1123. doi: 10.4161/auto.20275.
  19. Zhou X.J., Lu X.L., Lv. J.C. et al. Genetic association of PRDM1-ATG5 intergenic region and autophagy with systemic lupus erythematosus in a Chinese population. Ann. Rheum. Dis. 2011; 70: 1330–1337. doi: 10.1136/ard.2010.140111.
  20. Perl A. Systems biology of lupus: mapping the impact of genomic and environmental factors on gene expression signatures, cellular signaling, metabolic pathways, hormonal and cytokine imbalance, and selecting targets for treatment. Autoimmunity. 2010; 43: 32–47. doi: 10.3109/­08916930903374774.
  21. Debnath J., Baehrecke E.H., Kroemer G. Does autophagy contribute to cell death? Autophagy. 2005; 1: 66–74. doi: 10.4161/auto.1.2.1738.
  22. Kroemer G., J ̈a ̈attel ̈a M. Lysosomes and auto­phagy in cell death control. Nat. Rev. Cancer. 2005; 5: 886–897. doi: 10.1038/nrc1738.
  23. Wang Y., Singh R., Massey A.C. et al. J. Loss of macroautophagy promotes or prevents fibroblast apoptosis depending on the death stimulus. J. Biol. Chem. 2008; 283: 4766–4777. doi: 10.1074/jbc.M706666200.
  24. Skibo Y.V., Fathullina A.R., Romanova E.V., Litvinov R.I. Effects of platelet factor 4 on morphological and biochemical signs of apoptosis in T-lymphocytes. Geny i ­kletki. 2014; 9 (3): 118–124. (In Russ.)
  25. Xue C., Lan-Lan W., Bei C. et al. Abnormal Fas/FasL and caspase-3-mediated apoptotic signaling pathway of T-lymphocyte subset in patients with systemic lupus ery­thematosus. Cell. Immunol. 2006; 239: 121–128. doi: 10.1016/j.cellimm.2006.05.003.
  26. Rastin M., Mahmoudi M., Hatef M. et al. T lymphocyte apoptosis in systemic lupus erythematosus patients. Iran J. Basic Med. Sci. 2013; 16 (8): 936–941. PMID: 24106599.
  27. Ren Y., Tang J., Mok M.Y. et al. Increased apopto­tic neutrophils and macrophages and impaired macrophage phagocytic clearance of apoptotic neutrophils in systemic lupus erythematosus. Arthr. Rheum. 2003; 48 (10): 2888–2897. doi: 10.1002/art.11237.
  28. Qu X., Zou Z., Sun Q. et al. Autophagy gene-­dependent clearance of apoptotic cells during embryonic development. Cell. 2007; 128 (5): 931–946. doi: 10.1016/j.cell.2006.12.044.
  29. Kuma A., Komatsu M., Mizushima N. Autophagy-monitoring and autophagy-deficient mice. Autophagy. 2017; 13 (10): 1619–1628. doi: 10.1080/15548627.2017.­1343770.
  30. Sánchez-Martín P., Komatsu M. p62/SQSTM1 — steering the cell through health and disease. J. Cell Sci. 2018; 131 (21): jcs222836. doi: 10.1242/jcs.222836.
  31. Klionsky D.J., Abdelmohsen K., Abe A. et al. Guidelines for the use and interpretation of assays for mo­nitoring autophagy (3rd edition). Autophagy. 2016; 12 (1): 1–222. doi: 10.1080/15548627.2015.1100356.
  32. Kochergin I.A., Tukhvatulin A.I., Logu­nov D.Yu., Zakharova M.N. Autophagy activation in peripheral mononuclear cells in amyotrophic lateral sclerosis. Annaly klinicheskoy i eksperimentalnoy nevrologii. 2016; 10 (4): 26–31. (In Russ.)

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Analysis of the content of (A) B-cell lymphoma 2 (Bcl-2) and (B) caspase-3 proteins in T-lymphocyte lysates obtained from healthy donors and patients with systemic lupus erythematosus (SLE)

Download (21KB)
3. Fig. 2. Analysis of the content of Vps34 and Beclin 1 proteins in T-lymphocyte lysates. (A) Representative Western blot analysis of Vps34 and Beclin 1 protein content in T cell lysates. The immunograms show control cell lysates and samples of lysates obtained from cells of patients with systemic lupus erythematosus (SLE). Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is used as a “boot” control. (B) Results of a statistical analysis of (A) Beclin 1 and (B) Vps34 protein expression data in T-lymphocytes obtained from healthy donors and SLE patients.

Download (26KB)
4. Fig. 3. Analysis of the content of p62 protein in T-lymphocyte lysates. (A) Representative Western blot analysis of p62 protein content in T cell lysates. The immunograms show control cell lysates and samples of lysates obtained from cells of patients with systemic lupus erythematosus (SLE). Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is used as a “boot” control. (B) Results of a statistical analysis of p62 expression data in T-lymphocytes of healthy donors and SLE patients.

Download (21KB)
5. Fig. 4. Analysis of the content of LC3 protein isoforms (forms I and II) and their ratio in T-lymphocyte lysates of healthy donors and systemic lupus erythematosus (SLE) patients. GAPDH, glyceraldehyde 3-phosphate dehydrogenase.

Download (21KB)
6. Fig. 5. Analysis of the content of LC3 protein isoforms (forms I and II) and their ratio in T-lymphocytes of healthy donors and patients with systemic lupus erythematosus with acute, subacute, and chronic courses of the disease.

Download (14KB)

© 2020 Skibo Y.V., Fathullina A.R., Ibragimov B.R., Abramov S.N., Ismagilova R.R., Biktagirova E.M., Andrianova I.A., Maksudova A.N., Abramova Z.I.

Creative Commons License

This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies