Stress, inflammation and coping strategies — association with rheumatological pathology

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Stress, which inevitably occurs in the life of any person, affects various aspects of the functioning of the body and psyche. The purpose of the work is to summarize the results of review and empirical studies of the relationship between stress factors and changes in the activity of the immune system, affecting the patient’s choice of coping strategies and attitude to treatment. The impact of a stressor on the organs of the immune system occurs through activation of the autonomic nervous system and the hypothalamic-pituitary-adrenal axis and is accompanied by changes in the concentration of cytokines, the severity of cellular and humoral immunity. Short-term stressors significantly change the activity of the immune system by reducing the synthesis of Th1-type cytokines, reduce the severity of cellular immunity, but enhance humoral immunity. Chronic stressors have a negative impact on almost all functional indicators of the immune system. The results of the review indicate a close connection between coping behavior in a stressful situation and the activity of the immune system. The review examines the influence of family and man-made stressors on the activity of the immune system, the action of which leads to the formation of pro-inflammatory readiness of the body and an increase in the patient’s perception of pain, which increases the risk of developing rheumatological diseases under stressful living conditions. Isolated or lonely people are at greater risk of various inflammatory diseases and exhibit stronger inflammatory responses, leading to an increased risk of developing depressive symptoms. Turning to the construct of “coping intelligence” as a resource for preventive and personalized medicine allows us to describe two scenarios for changes in the immune system and the corresponding behavior of the patient and his attitude to treatment: (1) increased inflammation and increased vulnerability or (2) decreased inflammation and increased resistance to stress. Adaptive coping behavior allows people to effectively deal with stress, ensuring a person’s immunological stability by increasing the population of T helper cells and natural killer cells, thereby reducing the risk of developing rheumatological diseases.

About the authors

Olga V. Teplyakova

Ural State Medical University; Center for Clinical Rheumatology LLC «Medical Association “New Hospital”»

Email: oteplyakova69@gmail.com
ORCID iD: 0000-0003-2114-0419

M.D., D. Sci. (Med.), Prof., Depart. of Polyclinic Therapy, Ultrasound and Functional Diagnostics; Head

Russian Federation, Yekaterinburg, Russia; Yekaterinburg, Russia

Irina O. Kuvaeva

Ural Federal University; Institute of Psychology of the Russian Academy of Sciences

Author for correspondence.
Email: irina.kuvaeva@urfu.ru
ORCID iD: 0000-0001-5451-0725
SPIN-code: 7244-9678

Cand. Sci. (Psychol.), Assoc. Prof., Psychological Depart., Researcher, Druzhinin Laboratory, Psychology of Abilities and Mental Resources

Russian Federation, Ekaterinburg, Russia; Moscow, Russia

Elena V. Volkova

Institute of Psychology of the Russian Academy of Sciences

Email: volkovaev@ipran.ru
ORCID iD: 0000-0003-3809-3639
SPIN-code: 8375-5018

D. Sci. (Psychol.), Chief Researcher, Head, Druzhinin Laboratory of Psychology of Abilities and Mental Resources

Russian Federation, Moscow, Russia

References

  1. Galushko EA, Nasonov EL. Prevalence of rheumatic diseases in Russia. Almanac of Clinical Medicine. 2018;46(1):32–39. (In Russ.) doi: 10.18786/2072-0505-2018-46-1-32-39.
  2. Lila AM, Lila VA. Social significance and economic consequences of rheumatic diseases. Gigiena i Sanitaria. 2017;96(4): 387–392. (In Russ.) doi: 10.18821/0016-9900-2017-96-4-387-392.
  3. Belbasis L, Dosis V, Evangelou E. Elucidating the environmental risk factors for rheumatic diseases: An umbrella review of meta-analyses. Int J Rheum Dis. 2018;21(8):1514–1524. doi: 10.1111/1756-185X.13356.
  4. Chancay MG, Guendsechadze SN, Blanco I. Types of pain and their psychosocial impact in women with rheumatoid arthritis. Womens Midlife Health. 2019;5:3. doi: 10.1186/s40695-019-0047-4.
  5. Wróbel A, Barańska I, Szklarczyk J, Majda A, Jaworek J. Relationship between perceived stress, stress coping strategies, and clinical status in patients with rheumatoid arthritis. Rheumatol Int. 2023;43(9):1665–1674. doi: 10.1007/s00296-023-05367-6.
  6. Kuvaeva IO, Volkova EV. Biochemical correlates of individual differences in coping intelligence. Natural Systems of Mind. 2022;2(2):18–34. doi: 10.38098/nsom_2022_02_02_03.
  7. Houston BK. Stress and coping. In: Snyder CR, Ford CE, editors. Coping with negative life events: Clinical and social psychological perspectives. Plenum Press; 1987. p. 373–399. doi: 10.1007/978-1-4757-9865-4_14.
  8. McEwen BS, Akil H. Revisiting the stress concept: Implications for affective disorders. J Neurosci. 2020;40(1):12–21. doi: 10.1523/JNEUROSCI.0733-19.2019.
  9. Braun-Lewensohn O, Mayer CH. Salutogenesis and coping: Ways to overcome stress and conflict. Int J Environ Res Public Health. 2020;17(18):6667. doi: 10.3390/ijerph17186667.
  10. Tripathy CS, Tripathy S, Gupta B, Kar SK. Stress, coping, and immunologic relevance: An empirical literature review. Journal of Medical Science. 2019:39(3):107–113. doi: 10.4103/jmedsci.jmedsci_138_18.
  11. Finstad GL, Giorgi G, Lulli LG, Pandolfi C, Foti G, León-Perez JM, Cantero-Sánchez FJ, Mucci N. Resilience, coping strategies and posttraumatic growth in the workplace following COVID-19: A narrative review on the positive aspects of trauma. Int J Environ Res Public Health. 2021;18(18):9453. doi: 10.3390/ijerph18189453.
  12. Algorani EB, Gupta V. Coping mechanisms. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023. https://www.ncbi.nlm.nih.gov/books/NBK559031 (access date: 22.09.2023).
  13. Cleypool CGJ, Mackaaij C, Lotgerink Bruinenberg D, Schurink B, Bleys RLAW. Sympathetic nerve distribution in human lymph nodes. J Anat. 2021;239(2):282–289. doi: 10.1111/joa.13422.
  14. Devi S, Alexandre YO, Loi JK, Gillis R, Ghazanfari N, Creed SJ, Holz LE, Shackleford D, Mackay LK, Heath WR, Sloan EK, Mueller SN. Adrenergic regulation of the vasculature impairs leukocyte interstitial migration and suppresses immune responses. Immunity. 2021;54(6):1219–1230.e7. doi: 10.1016/j.immuni.2021.03.025.
  15. Araujo LP, Maricato JT, Guereschi MG, Takenaka MC, Nascimento VM, de Melo FM, Quintana FJ, Brum PC, Basso AS. The sympathetic nervous system mitigates CNS autoimmunity via β2-adrenergic receptor signaling in immune cells. Cell Rep. 2019;28(12):3120–3130.e5. doi: 10.1016/j.celrep.2019.08.042.
  16. Nevin JT, Moussa M, Corwin WL, Mandoiu II, Srivastava PK. Sympathetic nervous tone limits the development of myeloid-derived suppressor cells. Sci Immunol. 2020;5(51):eaay9368. doi: 10.1126/sciimmunol.aay9368.
  17. Mueller SN. Neural control of immune cell trafficking. J Exp Med. 2022;219(3):e20211604. doi: 10.1084/jem.20211604.
  18. Elenkov IJ, Wilder RL, Carouses GP, Vizi ES. The sympathetic nerve — an integrative interface between two supersystems: The brain and the immune system. Pharmacol Rev. 2000;52(4):595–638. PMID: 11121511.
  19. Madden KS, Felten SY, Felten DL. Sympathetic nervous system modulation of the immune system. II. Induction of lymphocyte proliferation and migration in vivo by chemical sympathectomy. J Neuroimmunol. 1994;49(1–2):67–75. doi: 10.1016/0165-5728(94)90182-1.
  20. Moriya J. Critical roles of inflammation in atherosclerosis. J Cardiol. 2019;73(1):22–27. doi: 10.1016/j.jjcc.2018.05.010.
  21. Rohm TV, Meier DT, Olefsky JM, Donath MY. Inflammation in obesity, diabetes, and related disorders. Immunity. 2022;55(1):31–55. doi: 10.1016/j.immuni.2021.12.013.
  22. Elliot GR, Eisdorfer C. Stress and human health: An analysis and implications of research. New York: Springer Publishing; 1982. 372 p.
  23. Bigler MB, Egli SB, Hysek CM, Hoenger G, Schmied L, Baldin FS, Marquardsen FA, Recher M, Liechti ME, Hess C, Berger CT. Stress-induced in vivo recruitment of human cytotoxic natural killer cells favors subsets with distinct receptor profiles and associates with increased epinephrine levels. PLoS One. 2015;10(12):e0145635. doi: 10.1371/journal.pone.0145635.
  24. Segerstrom SC, Miller GE. Psychological stress and the human immune system: A meta-analytic study of 30 years of inquiry. Psychol Bull. 2004;130(4):601–630. doi: 10.1037/0033-2909.130.4.601.
  25. Boer AC, Ten Brinck RM, Evers AWM, van der Helm-van Mil AHM. Does psychological stress in patients with clinically suspect arthralgia associate with subclinical inflammation and progression to inflammatory arthritis? Arthritis Res Ther. 2018;20(1):93. doi: 10.1186/s13075-018-1587-y.
  26. Harsanyi S, Kupcova I, Danisovic L, Klein M. Selected biomarkers of depression: What are the effects of cytokines and inflammation? Int J Mol Sci. 2022;24(1):578. doi: 10.3390/ijms24010578.
  27. Dube SR, Fairweather D, Pearson WS, Felitti VJ, Anda RF, Croft JB. Cumulative childhood stress and autoimmune diseases in adults. Psychosom Med. 2009;71(2):243–250. doi: 10.1097/PSY.0b013e3181907888.
  28. Spitzer C, Wegert S, Wollenhaupt J, Wingenfeld K, Barnow S, Grabe HJ. Gender-specific association between childhood trauma and rheumatoid arthritis: A casecontrol study. J Psychosomat Res. 2013;74:296–300. doi: 10.1016/j.jpsychores.2012.10.007.
  29. Drozhdina EN, Kovalevskaya OB, Seravina OF, Shelepina TA, Lisitsina TA, Kouzmina NN, Veltischev DYu. The role of traumatic factors in maladjustment of children and adolescents with juvenile arthritis. Social and clinical psychiatry. 2012;22(1):44–50. (In Russ.)
  30. Wood SK, Bhatnagar S. Resilience to the effects of social stress: Evidence from clinical and preclinical studies on the role of coping strategies. Neurobiol Stress. 2015;1:164–173. doi: 10.1016/j.ynstr.2014.11.002.
  31. Patterson SL, Sagui-Henson S, Prather AA. Measures of psychosocial stress and stressful exposures. Arthritis Care Res (Hoboken). 2020;72(10):676–685. doi: 10.1002/acr.24228.
  32. Brown M, Worrell C, Pariante CM. Inflammation and early life stress: An updated review of childhood trauma and inflammatory markers in adulthood. Pharmacol Biochem Behav. 2021;211:173291. doi: 10.1016/j.pbb.2021.173291.
  33. Miller GE, Rohleder N, Cole SW. Chronic interpersonal stress predicts activation of pro- and anti-inflammatory signaling pathways 6 months later. Psychosom Med. 2009;71(1):57–62. doi: 10.1097/PSY.0b013e318190d7de.
  34. Brown RL, LeRoy AS, Chen MA, Suchting R, Jaremka LM, Liu J, Heijnen C, Fagundes CP. Grief symptoms promote inflammation during acute stress among bereaved spouses. Psychol Sci. 2022;33(6):859–873. doi: 10.1177/09567976211059502.
  35. Abbott PA, Weinger MB. Health information technology: Fallacies and Sober realities — Redux A homage to Bentzi Karsh and Robert Wears. Appl Ergonom. 2020;82:102973. doi: 10.1016/j.apergo.2019.102973.
  36. Dragano N, Lunau T. Technostress at work and mental health: Concepts and research results. Curr Opin Psychiatry. 2020;33(4):407–413. doi: 10.1097/YCO.0000000000000613.
  37. Parker SK, Grote G. Automation, algorithms, and beyond: Why work design matters more than ever in a digital world. Appl Psychol. 2022;71(4):1171–1204. doi: 10.1111/apps.12241.
  38. La Torre G, Esposito A, Sciarra I, Chiappetta M. Definition, symptoms and risk of techno-stress: A systematic review. Int Arch Occup Environ Health. 2019;92(1):13–35. doi: 10.1007/s00420-018-1352-1.
  39. Borle P, Reichel K, Niebuhr F, Voelter-Mahlknecht S. How are techno-stressors associated with mental health and work outcomes? A systematic review of occupational exposure to information and communication technologies within the technostress model. Int J Environ Res Public Health. 2021;18(16):8673. doi: 10.3390/ijerph18168673.
  40. La Torre G, De Leonardis V, Chiappetta M. Technostress: How does it affect the productivity and life of an individual? Results of an observational study. Public Health. 2020;189:60–65. doi: 10.1016/j.puhe.2020.09.013.
  41. Arnold M, Goldschmitt M, Rigotti T. Dealing with information overload: A comprehensive review. Front Psychol. 2023;14:1122200. doi: 10.3389/fpsyg.2023.1122200.
  42. Galluch P, Grover V, Thatcher J. Interrupting the workplace: Examining stressors in an information technology context. JAIS. 2015;16(1):1–47. doi: 10.17705/1jais.00387.
  43. Rohwer E, Flöther JC, Harth V, Mache S. Overcoming the “dark side” of technology — a scoping review on preventing and coping with work-related technostress. Int J Environ Res Public Health. 2022;19(6):3625. doi: 10.3390/ijerph19063625.
  44. Emal LM, Tamminga SJ, Daams JG, Kezic S, Timmermans DRM, Schaafsma FG, van der Molen HF. Risk communication about work-related stress disorders in healthcare workers: A scoping review. Int Arch Occup Environ Health. 2022;95(6):1195–1208. doi: 10.1007/s00420-022-01851-x.
  45. Kaltenegger HC, Weigl M, Becker L, Rohleder N, Nowak D, Quartucci C. Psychosocial working conditions and chronic low-grade inflammation in geriatric care professionals: A cross-sectional study. PLoS ONE. 2022;17(9):e0274202. doi: 10.1371/journal.pone.0274202.
  46. Kasemy ZA, Sharif AF, Barakat AM, Abdelmohsen SR, Hassan NH, Hegazy NN, Sharfeldin AY, El-Ma'doul AS, Alsawy KA, Abo Shereda HM, Abdelwanees S. Technostress creators and outcomes among Egyptian medical staff and students: A multicenter cross-sectional study of remote working environment during COVID-19 pandemic. Front Public Health. 2022;10:796321. doi: 10.3389/fpubh.2022.796321.
  47. Schaufeli WB, Desart S, de Witte H. Burnout assessment tool (BAT)-development, validity, and reliability. Int J Environ Res Public Health. 2020;17(24):9495. doi: 10.3390/ijerph17249495.
  48. Matthews TA, Chen L, Li J. Increased job strain and cardiovascular disease mortality: A prospective cohort study in U.S. workers. Ind Health. 2023;61(4):250–259. doi: 10.2486/indhealth.2021-0233.
  49. Kaltenegger HC, Becker L, Rohleder N, Nowak D, Weigl M. Associations of working conditions and chronic low-grade inflammation among employees: A systematic review and meta-analysis. Scand J Work Environ Health. 2021;47(8):565–581. doi: 10.5271/sjweh.3982.
  50. Nakata A. Psychosocial job stress and immunity: A systematic review. Methods Mol Biol. 2012;934:39–75. doi: 10.1007/978-1-62703-071-7_3.
  51. Lam PH, Chiang JJ, Chen E, Miller GE. Race, socioeconomic status, and low-grade inflammatory biomarkers across the lifecourse: A pooled analysis of seven studies. Psychoneuroendocrinology. 2021;123:104917. doi: 10.1016/j.psyneuen.2020.104917.
  52. Cannon C, Rucker DD. Motives underlying human agency: How self-efficacy versus self-enhancement affect consumer behavior. Curr Opin Psychol. 2022;46:101335. doi: 10.1016/j.copsyc.2022.101335.
  53. Hladek M, Gill J, Lai C, Lorig K, Szanton S. High coping self-efficacy associated with lower sweat inflammatory cytokines in adults: A pilot study. Biol Res Nurs. 2020;22(1):75–81. doi: 10.1177/1099800419870607.
  54. Moriarity DP, Grehl MM, Walsh RFL, Roos LG, Slavich GM, Alloy LB. A systematic review of associations between emotion regulation characteristics and inflammation. Neurosci Biobehav Rev. 2023;150:105162. doi: 10.1016/j.neubiorev.2023.105162.
  55. Hladek M, Gill JM, Lai C, Bandeen-Roche K, Xue QL, Allen J, Leyden C, Kanefsky R, Szanton SL. High social coping self-efficacy associated with lower sweat interleukin-6 in older adults with chronic illness. J Appl Gerontol. 2022;41(2):581–589. doi: 10.1177/07334648211006518.
  56. Haroon E, Miller AH, Sanacora G. Inflammation, glutamate, and glia: A trio of trouble in mood disorders. Neuropsychopharmacology. 2017;42(1):193–215. doi: 10.1038/npp.2016.199.
  57. Felger JC, Treadway MT. Inflammation effects on motivation and motor activity: Role of dopamine. Neuropsychopharmacology. 2017;42(1):216–241. doi: 10.1038/npp.2016.143.
  58. Bourhy L, Mazeraud A, Bozza FA, Turc G, Lledo PM, Sharshar T. Neuro-inflammatory response and brain-peripheral crosstalk in sepsis and stroke. Front Immunol. 2022;13:834649. doi: 10.3389/fimmu.2022.834649.
  59. Dantzer R. Neuroimmune interactions: From the brain to the immune system and vice versa. Physiol Rev. 2018;98(1):477–504. doi: 10.1152/physrev.00039.2016.
  60. Kim YK, Amidfar M, Won E. A review on inflammatory cytokine-induced alterations of the brain as potential neural biomarkers in post-traumatic stress disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2019;91:103–112. doi: 10.1016/j.pnpbp.2018.06.008.
  61. Klumpers F, Kroes MCW, Baas JMP, Fernández G. How human amygdala and bed nucleus of the stria terminalis may drive distinct defensive responses. J Neurosci. 2017;37(40):9645–9656. doi: 10.1523/JNEUROSCI.3830-16.2017.
  62. Lindsay EK. Small “doses” of inflammation initiate social sickness behavior. Brain Behav Immun. 2022;102:40–41. doi: 10.1016/j.bbi.2022.02.012.
  63. Muscatell KA, Inagaki TK. Beyond social withdrawal: New perspectives on the effects of inflammation on social behavior. Brain Behav Immun Health. 2021;16:100302. doi: 10.1016/j.bbih.2021.100302.
  64. Inagaki TK, Muscatell KA, Irwin MR, Cole SW, Eisenberger NI. Inflammation selectively enhances amygdala activity to socially threatening images. Neuroimage. 2012;59(4):3222–3226. doi: 10.1016/j.neuroimage.2011.10.090.
  65. Capuron L, Pagnoni G, Drake DF, Woolwine BJ, Spivey JR, Crowe RJ, Votaw JR, Goodman MM, Miller AH. Dopaminergic mechanisms of reduced basal ganglia responses to hedonic reward during interferon alfa administration. Arch Gen Psychiatry. 2012;69(10):1044–1053. doi: 10.1001/archgenpsychiatry.2011.2094.
  66. Elkhatib SK, Moshfegh CM, Watson GF, Case AJ. Peripheral inflammation is strongly linked to elevated zero maze behavior in repeated social defeat stress. Brain Behav Immun. 2020;90:279–285. doi: 10.1016/j.bbi.2020.08.031.
  67. Willette AA, Lubach GR, Coe CL. Environmental context differentially affects behavioral, leukocyte, cortisol, and interleukin-6 responses to low doses of endotoxin in the rhesus monkey. Brain Behav Immun. 2007;21(6):807–815. doi: 10.1016/j.bbi.2007.01.007.
  68. Majd M, Saunders EFH, Engeland CG. Inflammation and the dimensions of depression: A review. Front Neuroendocrinol. 2020;56:100800. doi: 10.1016/j.yfrne.2019.100800.
  69. Kofod J, Elfving B, Nielsen EH, Mors O, Köhler-Forsberg O. Depression and inflammation: Correlation between changes in inflammatory markers with antidepressant response and long-term prognosis. Eur Neuropsychopharmacol. 2022;54:116–125. doi: 10.1016/j.euroneuro.2021.09.006.
  70. Zajkowska Z, Borsini A, Nikkheslat N, Russell A, Romano GF, Tomassi S, Hepgul N, Forton D, Agarwal K, Hotopf M, Mondelli V, Zunszain P, Pariante CM. Differential effect of interferon-alpha treatment on AEA and 2-AG levels. Brain Behav Immun. 2020;90:248–258. doi: 10.1016/j.bbi.2020.08.024.
  71. O'Connor JC, Lawson MA, André C, Moreau M, Lestage J, Castanon N, Kelley KW, Dantzer R. Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol Psychiatry. 2009;14(5):511–522. doi: 10.1038/sj.mp.4002148.
  72. Raison CL, Dantzer R, Kelley KW, Lawson MA, Woolwine BJ, Vogt G, Spivey JR, Saito K, Miller AH. CSF concentrations of brain tryptophan and kynurenines during immune stimulation with IFN-alpha: Relationship to CNS immune responses and depression. Mol Psychiatry. 2010;15(4):393–403. doi: 10.1038/mp.2009.116.
  73. Erzen E, Çikrikci Ö. The effect of loneliness on depression: A meta-analysis. Int J Soc Psychiatry. 2018;64(5):427–435. doi: 10.1177/0020764018776349.
  74. Eisenberger NI, Moieni M. Inflammation affects social experience: Implications for mental health. World Psychiatry. 2020;19(1):109–110. doi: 10.1002/wps.20724.
  75. Moieni M, Irwin MR, Jevtic I, Olmstead R, Breen EC, Eisenberger NI. Sex differences in depressive and socioemotional responses to an inflammatory challenge: Implications for sex differences in depression. Neuropsychopharmacology. 2015;40(7):1709–1716. doi: 10.1038/npp.2015.17.
  76. Siviero P, Veronese N, Smith T, Stubbs B, Limongi F, Zambon S, Dennison EM, Edwards M, Cooper C, Timmermans EJ, van Schoor NM, van der Pas S, Schaap LA, Denkinger MD, Peter R, Herbolsheimer F, Otero Á, Castell MV, Pedersen NL, Deeg DJH, Maggi S; EPOSA Research Group. Association between osteoarthritis and social isolation: Data from the EPOSA study. J Am Geriatr Soc. 2020;68(1):87–95. doi: 10.1111/jgs.16159.
  77. Kraav SL, Lehto SM, Kauhanen J, Hantunen S, Tolmunen T. Loneliness and social isolation increase cancer incidence in a cohort of Finnish middle-aged men. A longitudinal study. Psychiatry Res. 2021;299:113868. doi: 10.1016/j.psychres.2021.113868.
  78. Nettis MA, Pariante CM. Is there neuroinflammation in depression? Understanding the link between the brain and the peripheral immune system in depression. Int Rev Neurobiol. 2020;152:23–40. doi: 10.1016/bs.irn.2019.12.004.
  79. Filip M, Macander M, Gałecki P, Talarowska M, Zboralski K, Szemraj J, Orzechowska A. Coping with stress, control of emotions and biochemical markers as a common protective element in the inflammatory response to stress. Psychiatr Pol. 2018;52(3):511–524. doi: 10.12740/PP/79217.
  80. Perez-Tejada J, Garmendia L, Labaka A, Vegas O, Gómez-Lazaro E, Arregi A. Active and passive coping strategies: Comparing psychological distress, cortisol, and proinflammatory cytokine levels in breast cancer survivors. Clin J Oncol Nurs. 2019;23(6):583–590. doi: 10.1188/19.CJON.583-590.
  81. Joana P, Amaia A, Arantza A, Garikoitz B, Eneritz GL, Larraitz G. Central immune alterations in passive strategy following chronic defeat stress. Behav Brain Res. 2016;298:291–300. doi: 10.1016/j.bbr.2015.11.015.
  82. Dantzer R, Cohen S, Russo SJ, Dinan TG. Resilience and immunity. Brain Behav Immun. 2018;74:28–42. doi: 10.1016/j.bbi.2018.08.010.
  83. Kavelaars A, Heijnen CJ, Tennekes R, Bruggink JE, Koolhaas JM. Individual behavioral characteristics of wild-type rats predict susceptibility to experimental autoimmune encephalomyelitis. Brain Behav Immun. 1999;13(4):279–286. doi: 10.1006/brbi.1998.0534.
  84. Goñi-Balentziaga O, Garmendia L, Labaka A, Lebeña A, Beitia G, Gómez-Lázaro E, Vegas O. Behavioral coping strategies predict tumor development and behavioral impairment after chronic social stress in mice. Physiol Behav. 2020;214:112747. doi: 10.1016/j.physbeh.2019.112747.
  85. Adamichou C, Bertsias G. Flares in systemic lupus erythematosus: diagnosis, risk factors and preventive strategies. Mediterr J Rheumatol. 2017;28(1):4–12. doi: 10.31138/mjr.28.1.4.
  86. Stojanovich L. Stress and autoimmunity. Autoimmun Rev. 2010;9(5):A271–A276. doi: 10.1016/j.autrev.2009.11.014.
  87. Polinski KJ, Bemis EA, Feser M, Seifert J, Demoruelle MK, Striebich CC, Brake S, O'Dell JR, Mikuls TR, Weisman MH, Gregersen PK, Keating RM, Buckner J, Nicassio P, Holers VM, Deane KD, Norris JM. Perceived stress and inflammatory arthritis: A prospective investigation in the studies of the etiologies of rheumatoid arthritis cohort. Arthritis Care Res (Hoboken). 2020;72(12):1766–1771. doi: 10.1002/acr.24085.
  88. Yılmaz V, Umay E, Gündoğdu İ, Karaahmet ZÖ, Öztürk AE. Rheumatoid arthritis: Are psychological factors effective in disease flare? Eur J Rheumatol. 2017;4(2):127–132. doi: 10.5152/eurjrheum.2017.16100.
  89. Hsu TW, Bai YM, Tsai SJ, Chen TJ, Chen MH, Liang CS. Risk of autoimmune diseases after post-traumatic stress disorder: A nationwide cohort study. Eur Arch Psychiatry Clin Neurosci. 2023. doi: 10.1007/s00406-023-01639-1.
  90. Baumeister D, Akhtar R, Ciufolini S, Pariante CM, Mondelli V. Childhood trauma and adulthood inflammation: A meta-analysis of peripheral C-reactive protein, interleukin-6 and tumour necrosis factor-α. Mol Psychiatry. 2016;21:642–649. doi: 10.1038/mp.2015.67.
  91. Salihoğlu S, Doğan SC, Kavakçı Ö. Effects of childhood psychological trauma on rheumatic diseases. Eur J Rheumatol. 2018;6(3):126–129. doi: 10.5152/eurjrheum.2019.18184.
  92. Flurey CA, Hewlett S, Rodham K, White A, Noddings R, Kirwan JR. Coping strategies, psychological impact, and support preferences of men with rheumatoid arthritis: A multicenter survey. Arthritis Care Res (Hoboken). 2018;70(6):851–860. doi: 10.1002/acr.23422.
  93. Fortin PR, Da Costa D, Neville C, Julien AS, Rahme E, Haroun V, Singer W, Nimigon-Young J, Morrison AL, Eng D, Peschken CA, Vinet E, Hudson M, Smith D, Matsos M, Pope JE, Clarke AE, Keeling S, Avina-Zubieta JA, Rochon M. Challenges of perceived self-management in lupus. Arthritis Care Res (Hoboken). 2022;74(7):1113–1121. doi: 10.1002/acr.24542.
  94. Farhat MM, Morell-Dubois S, Le Gouellec N, Launay D, Maillard H, Balquet MH, Azar R, Quemeneur T, Boldron A, Bataille P, Lambert M, Lanteri A, Buchdahl AL, Sobanski V, Hatron PY, Hachulla E, Clerson P; ESSTIM Investigators group. Consideration of coping strategies for patients suffering from systemic lupus erythematosus: Reflection for a personalised practice of patient education. Clin Exp Rheumatol. 2020;38(4):705–712. PMID: 31858960.
  95. Abramkin AA, Lisitsyna TA, Veltishchev DYu, Seravina OF, Kovalevskaya OB, Nasonov EL. The impact of adequate psychopharmacotherapy on the efficiency of treatment in patients with rheumatoid arthritis. Rheumatology Science and Practice. 2018;56(2):173–183. (In Russ.) doi: 10.14412/1995-4484-2018-173-183.
  96. Volkova EV, Kuvaeva IO. Sovladayushchiy intellekt: differentsionno-integratsionnyy podkhod. (Coping intelligence: a differentiation-integration approach.) M.: Institut psikhologii RAN ; 2023. 440 p. (In Russ.)

© 2023 Eco-Vector





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies