Microsatellite instability in precancerous changes in the gastric mucosa

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Microsatellite instability is a widely known and sought after tumor marker. Among other things, its prevalence and role in the development of gastric adenocarcinoma are being studied. However, the profile of microsatellite instability during precancerous changes in the gastric mucosa (atrophy, intestinal metaplasia, epithelial dysplasia) remains insufficiently studied. The purpose of this literature review is to assess the possibility of using microsatellite instability status as a diagnostic and predictive marker of precancerous changes and lesions of the gastric mucosa. A systematic review of publications in the PubMed database was conducted using a search query based on the combination of the terms “microsatellite instability” (“MSI”), “stomach/gastric cancer/adenocarcinoma”, “stomach/gastric dysplasia/intraepithelial neoplasia”, “stomach/gastric precancerous lesions” for the period from 1997 to 2023. Review articles were excluded from the search results. The systematic review included 11 relevant publications. Despite the lack of a uniform methodology and diversity in the study groups, all publications demonstrated an increase in the level of microsatellite instability in the range from normal (unchanged) gastric mucosa and/or its precancerous changes to gastric cancer: among precancerous changes in the gastric mucosa, the most common subject of study was intestinal metaplasia, where levels of microsatellite instability ranged from 0 to 53.3%, while its levels in gastric cancer ranged from 32.6 to 76.7%. The results of the studies included in the review may indicate a possible predictive role of microsatellite instability in precancerous changes in the gastric mucosa in relation to the risk of developing cancer.

About the authors

Maria N. Parygina

Omsk State Medical University

Author for correspondence.
Email: mariyakern@gmail.com
ORCID iD: 0000-0001-8006-3260

M.D., Cand. Sci. (Med.), Assistant, Depart. of Pathological Anatomy

Russian Federation, Omsk, Russia

Vyacheslav A. Rubtsov

Omsk State Medical University

Email: rubtsov.omgmu@mail.ru
ORCID iD: 0000-0003-1834-3629

M.D., Cand. Sci. (Med.), Assoc. Prof., Depart. of Pathological Anatom

Russian Federation, Omsk, Russia

Sofia V. Ivanova

Omsk State Medical University

Email: sofiaVesk@yandex.ru
ORCID iD: 0009-0006-9483-869X

Student

Russian Federation, Omsk, Russia

Anna G. Shimanskaya

Omsk State Medical University

Email: shimansckaya.anna@yandex.ru
ORCID iD: 0000-0003-0949-8709

M.D., Cand. Sci. (Med.), Assoc. Prof., Depart. of Pathological Anatomy

Russian Federation, Omsk, Russia

Alexei V. Kononov

Omsk State Medical University

Email: ogmapath@mail.ru
ORCID iD: 0000-0001-8607-7831

M.D., D. Sci. (Med.), Prof., Head of Depart., Depart. of Pathological Anatomy

Russian Federation, Omsk, Russia

References

  1. Vaksman Z, Garner HR. Somatic microsatellite variability as a predictive marker for colorectal cancer and liver cancer progression. Oncotarget. 2015;6:5760–5771. doi: 10.18632/oncotarget.3306.
  2. Liehr T. Repetitive elements in humans. Int J Mol Sci. 2021;22(4):2072. doi: 10.3390/ijms22042072.
  3. Miller CJ, Usdin K. Mismatch repair is a double-edged sword in the battle against microsatellite instability. Expert Rev Mol Med. 2022;24:e32. doi: 10.1017/erm.2022.16.
  4. Kurbatov V, Khan SA. Exploring microsatellite instability (MSI) in colorectal cancer at elevated microsatellite alterations at selected tetranucleotides (EMAST). Ann Surg Oncol. 2020;27(4):973–974. doi: 10.1245/s10434-019-08051-x.
  5. Li K, Luo H, Huang L, Luo H, Zhu X. Microsatellite instability: A review of what the oncologist should know. Cancer Cell Int. 2020;20:16. doi: 10.1186/s12935-019-1091-8.
  6. Wang Z, Moffitt AB, Andrews P, Wigler M, Levy D. Accurate measurement of microsatellite length by disrupting its tandem repeat structure. Nucleic Acids Res. 2022;50(20):e116. doi: 10.1093/nar/gkac723.
  7. Yang G, Zheng RY, Jin ZS. Correlations between microsatellite instability and the biological behaviour of tumours. J Cancer Res Clin Oncol. 2019;145(12):2891–2899. doi: 10.1007/s00432-019-03053-4.
  8. Chistiakov DA, Hellemans B, Volckaert FAM. Microsatellites and their genomic distribution, evolution, function and applications: A review with special reference to fish genetics. Aquaculture. 2006;255:1–29. doi: 10.1016/j.aquaculture.2005.11.031.
  9. Srivastava S, Avvaru AK, Sowpati DT, Mishra RK. Patterns of microsatellite distribution across eukaryotic genomes. BMC Genomics. 2019;20(1):153. doi: 10.1186/s12864-019-5516-5.
  10. Wright SE, Todd PK. Native functions of short tandem repeats. Elife. 2023;12:e84043. doi: 10.7554/eLife.84043.
  11. Gadgil R, Barthelemy J, Lewis T, Leffak M. Replication stalling and DNA microsatellite instability. Biophys Chem. 2017;225:38–48. doi: 10.1016/j.bpc.2016.11.007.
  12. Amaral-Silva GK, Martins MD, Pontes HA, Fregnani ER, Lopes MA, Fonseca FP, Vargas PA. Mismatch repair system proteins in oral benign and malignant lesions. J Oral Pathol Med. 2017;46(4):241–245. doi: 10.1111/jop.12484.
  13. Salem ME, Bodor JN, Puccini A, Xiu J, Goldberg RM, Grothey A, Korn WM, Shields AF, Worrilow WM, Kim ES, Lenz HJ, Marshall JL, Hall MJ. Relationship between MLH1, PMS2, MSH2 and MSH6 gene-specific alterations and tumor mutational burden in 1057 microsatellite instability-high solid tumors. Int J Cancer. 2020;147(10):2948–2956. doi: 10.1002/ijc.33115.
  14. Cherri S, Oneda E, Noventa S, Melocchi L, Zaniboni A. Microsatellite instability and chemosensitivity in solid tumours. Ther Adv Med Oncol. 2022;14:17588359221099347. doi: 10.1177/17588359221099347.
  15. Randrian V, Evrard C, Tougeron D. Microsatellite instability in colorectal cancers: Carcinogenesis, neo-antigens, immuno-resistance and emerging therapies. Cancers. 2021;13(12):3063. doi: 10.3390/cancers13123063.
  16. Luchini C, Bibeau F, Ligtenberg MJL, Singh N, Nottegar A, Bosse T, Miller R, Riaz N, Douillard JY, Andre F, Scarpa A. ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: A systematic review-based approach. Ann Oncol. 2019;30(8):1232–1243. doi: 10.1093/annonc/mdz116.
  17. Abdel-Rahman WM. Genomic instability and carcinogenesis: An update. Curr Genomics. 2008;9(8):535–541. doi: 10.2174/138920208786847926.
  18. Eso Y, Shimizu T, Takeda H, Takai A, Marusawa H. Microsatellite instability and immune checkpoint inhibitors: Toward precision medicine against gastrointestinal and hepatobiliary cancers. J Gastroenterol. 2020;55(1):15–26. doi: 10.1007/s00535-019-01620-7.
  19. WHO classification of tumours. Digestive system tumours. 5th ed. I.A. Cree, editor. IARC; 2019. 635 p.
  20. WHO classification of tumours. Female genital tumours. 5th ed. I.A. Cree, editor. IARC; 2020. 632 p.
  21. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513:202–209. doi: 10.1038/nature13480.
  22. Cristescu R, Lee J, Nebozhyn M, Kim KM, Ting JC, Wong SS, Liu J, Yue YG, Wang J, Yu K, Ye XS, Do IG, Liu S, Gong L, Fu J, Jin JG, Choi MG, Sohn TS, Lee JH, Bae JM, Kim ST, Park SH, Sohn I, Jung SH, Tan P, Chen R, Hardwick J, Kang WK, Ayers M, Hongyue D, Reinhard C, Loboda A, Kim S, Aggarwal A. Molecular analysis of gastric cancer identifies subtypes associated with distinct cli-nical outcomes. Nat Med. 2015;21:449–456. doi: 10.1038/nm.3850.
  23. Polom K, Marano L, Marrelli D, De Luca R, Roviello G, Savelli V, Tan P, Roviello F. Meta-analysis of microsatellite instability in relation to clinicopathological characteristics and overall survival in gastric cancer. Br J Surgery. 2018;105:159–167. doi: 10.1002/bjs.10663.
  24. Puliga E, Corso S, Pietrantonio F, Giordano S. Microsatellite instability in gastric cancer: Between lights and shadows. Cancer Treat Rev. 2021;95:102175. doi: 10.1016/j.ctrv.2021.102175.
  25. Zubarayev M, Min E-K, Son T. Clinical and molecular prognostic markers of survival after surgery for gastric cancer: tumor-node-metastasis staging system and beyond. Transl Gastroenterol Hepatol. 2019;4:59. DOI: 10.21037/ tgh.2019.08.05.
  26. Martinez-Ciarpaglini C, Fleitas-Kanonnikoff T, Gambardella V, Llorca M, Mongort C, Mengual R, Nieto G, Navarro L, Huerta M, Rosello S, Roda D, Tarazona N, Navarro S, Ribas G, Cervantes A. Assessing molecular subtypes of gastric cancer: Microsatellite unstable and Epstein–Barr virus subtypes. Methods for detection and clinical and pathological implications. ESMO Open. 2019;4:e000470. doi: 10.1136/esmoopen-2018-000470.
  27. Kim J-Y, Shin NR, Kim A, Lee HJ, Park WY, Kim JY, Lee CH, Huh GY, Park DY. Microsatellite instability status in gastric cancer: A reappraisal of its clinical significance and relationship with mucin phenotypes. Korean J Pathol. 2013;47:28–35. doi: 10.4132/Korean JPathol.2013.47.1.28.
  28. Mathiak M, Warneke VS, Behrens H-M, Haag J, Böger C, Krüger S, Röcken C. Clinicopathologic characteristics of microsatellite instable gastric carcinomas revisited: Urgent need for standardization. Appl Immunohistochem Mol Morphol. 2017;25:12–24. doi: 10.1097/PAI.0000000000000264.
  29. Leite M, Corso G, Sousa S, Milanezi F, Afonso LP, Henrique R, Soares JM, Castedo S, Carneiro F, Roviello F, Oliveira C, Seruca R. MSI phenotype and MMR alterations in familial and sporadic gastric cancer. Int J Cancer. 2011;128:1606–1613. doi: 10.1002/ijc.25495.
  30. Pedrazzani C, Corso G, Velho S, Leite M, Pascale V, Bettarini F, Marrelli D, Seruca R, Roviello F. Evidence of tumor microsatellite instability in gastric cancer with familial aggregation. Fam Cancer. 2009;8:215–220. doi: 10.1007/s10689-008-9231-7.
  31. Polom K, Marrelli D, Voglino C, Roviello G, De Franco L, Vindigni C, Generali D, Roviello F. Familial aggregation of gastric cancer with microsatellite instability. Acta Chir Belg. 2018;118:287–293. doi: 10.1080/00015458.2017.1379789.
  32. Tian R, Hu J, Ma X, Liang L, Guo S. Immune-related gene signature predicts overall survival of gastric cancer patients with varying microsatellite instability status. Aging (Albany NY). 2020;13(2):2418–2435. doi: 10.18632/aging.202271.
  33. Challine A, Karoui M, De La Fouchardière C, André T, Svrcek M, Meeus P, Dupré A, Paye F, Benoit S, Denet C, Eveno C, Lefèvre JH, Parc Y. Outcomes of surgical resection in microsatellite instable colorectal cancer after immune checkpoint inhibitor treatment. Br J Surg. 2023;110(9):1043–1045. doi: 10.1093/bjs/znac425.
  34. Danilova NV, Chayka AV, Khomyakov VM, Oleynikova NA, Andreeva YuYu, Malkov PG. Microsatellite instability in gastric cancer is a predictor of favorable prognosis. Arkhiv patologii. 2022;84(6):5–15. (In Russ.) doi: 10.17116/patol2022840615.
  35. Correa P. Chronic gastritis: A clinico-pathological classification. Am J Gastroenterol. 1988;83(5):504–509. PMID: 3364410.
  36. Hamamoto T, Yokozaki H, Semba S, Yasui W, Yunotani S, Miyazaki K, Tahara E. Altered microsatellites in incomplete-type intestinal metaplasia adjacent to primary gastric cancers. J Clin Pathol. 1997;50(10):841–846. doi: 10.1136/jcp.50.10.841.
  37. Fang DC, Jass JR, Wang DX, Zhou XD, Luo YH, Young J. Infrequent loss of heterozygosity of APC/MCC and DCC genes in gastric cancer showing DNA microsatellite instability. J Clin Pathol. 1999;52(7):504–508. doi: 10.1136/jcp.52.7.504.
  38. Kobayashi K, Okamoto T, Takayama S, Akiyama M, Ohno T, Yamada H. Genetic instability in intestinal metaplasia is a frequent event leading to well-differentiated early adenocarcinoma of the stomach. Eur J Cancer. 2000;36(9):1113–1119. doi: 10.1016/s0959-8049(00)00066-6.
  39. Leung WK, Kim JJ, Kim JG, Graham DY, Sepulveda AR. Microsatellite instability in gastric intestinal metaplasia in patients with and without gastric cancer. Am J Pathol. 2000;156(2):537–543. doi: 10.1016/S0002-9440(10)64758-X.
  40. Garay J, Bravo JC, Correa P, Schneider BG. Infrequency of microsatellite instability in complete and incomplete gastric intestinal metaplasia. Hum Pathol. 2004;35(1):102–106. doi: 10.1016/j.humpath.2003.08.023.
  41. Li JH, Shi XZ, Lv S, Liu M, Xu GW. Effect of Helicobacter pylori infection on p53 expression of gastric mucosa and adenocarcinoma with microsatellite instability. World J Gastroenterol. 2005;11(28):4363–4366. doi: 10.3748/wjg.v11.i28.4363.
  42. Liu P, Zhang XY, Shao Y, Zhang DF. Microsatellite instability in gastric cancer and pre-cancerous lesions. World J Gastroenterol. 2005;11(31):4904–4907. doi: 10.3748/wjg.v11.i31.4904.
  43. Zaky AH, Watari J, Tanabe H, Sato R, Moriichi K, Tanaka A, Maemoto A, Fujiya M, Ashida T, Kohgo Y. Clinicopathologic implications of genetic instability in intestinal-type gastric cancer and intestinal metaplasia as a precancerous lesion: Proof of field cancerization in the stomach. Am J Clin Pathol. 2008;129(4):613–621. doi: 10.1309/DFLELPGPNV5LK6B1.
  44. Sugai T, Habano W, Jiao YF, Toyota M, Suzuki H, Tsukahara M, Koizuka H, Akasaka R, Koeda K, Wakabayashi G, Suzuki K. Molecular analysis of single isolated glands in gastric cancers and their surrounding gastric intestinal metaplastic mucosa. Oncol Rep. 2010;23(1):25–33. doi: 10.3892/or_00000602.
  45. Li B, Liu HY, Guo SH, Sun P, Gong FM, Jia BQ. Detection of microsatellite instability in gastric cancer and dysplasia tissues. Int J Clin Exp Med. 2015;8(11):21442–21447. PMID: 26885089.
  46. Li B, Liu HY, Guo SH, Sun P, Gong FM, Jia BQ. Microsatellite instability of gastric cancer and precancerous lesions. Int J Clin Exp Med. 2015;8(11):21138–21144. PMID: 26885046.

Supplementary files

Supplementary Files
Action
1. JATS XML

© 2024 Eco-Vector

Creative Commons License

This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.





Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».