Modern concepts about the pathogenesis of thrombosis of various etiologies

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Thrombosis becomes the cause and complication of many cardiovascular diseases, and their prevalence remains a leader in the structure of morbidity and mortality in Russia and throughout the world. Modern fundamental and clinical research has significantly supplemented traditional ideas about the mechanisms of thrombus formation. First of all, Virchow's triad has been rethought, in which, according to new data, the leading role is assigned to vascular damage, and slowing down blood flow plays a primary role in the formation of only venous, but not arterial, blood clots. In recent years, the mechanisms of endothelial dysfunction underlying thrombosis associated with inflammatory (immunothrombosis) and atherosclerotic (atherothrombosis) damage to the vascular wall have been studied in detail. The cellular and molecular mechanisms of acquired hypercoagulability and hereditary thrombophilia have been deciphered. The traditional concept of dividing blood clots into “red” (venous, consisting of fibrin and red blood cells) and “white” (arterial, platelet) is being revised. It has been shown that red blood cells can occupy most of the volume of not only venous, but also arterial thrombi, and play an important role in thrombus formation reactions. The process of compression (contraction, retraction) of blood clots, caused by contraction of activated platelets, changing the structure of the blood clot and affecting the course and outcome of thrombosis, is being actively studied. A deep understanding of the pathogenesis of thrombosis, taking into account modern concepts, is necessary for effective prevention, early diagnosis and treatment of thrombotic conditions.

About the authors

Rafael R. Khismatullin

Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University

Author for correspondence.
Email: rafael.khismatullin@gmail.com
ORCID iD: 0000-0001-8597-811X
SPIN-code: 2802-2405
Scopus Author ID: 57201333953
ResearcherId: AAT-8662-2020

M.D., Cand. Sci. (Med.), Senior Lecturer, Depart. of Morphology and General Pathology, Institute of Fundamental Medicine and Biology; Pathologist, Pathoanatomical Depart., Medical and Sanitary Unit

Russian Federation, Kazan, Russia

Rustem I. Litvinov

Department of Cell and Developmental Biology, School of Medicine, University of Pennsylvania

Email: rustempa@gmail.com
ORCID iD: 0000-0003-0643-1496
SPIN-code: 1327-1641
Scopus Author ID: 35565337800
ResearcherId: E-5291-2011

M.D., D. Sci. (Med.), Prof., Senior Research Investigator, Depart. of Cell and Developmental Biology

United States, Philadelphia, United States of America

References

  1. Shlyakhto EV, Baranova EI. Central directions for reducing cardiovascular mortality: what can be changed today? Russian Journal of Cardiology. 2020;25(7):3983. (In Russ.) doi: 10.15829/1560-4071-2020-3983.
  2. Matskeplishvili S, Kontsevaya A. Cardiovascular health, disease, and care in Russia. Circulation. 2021;144(8):586–588. doi: 10.1161/CIRCULATIONAHA.121.055239.
  3. Wendelboe AM, Raskob GE. Global burden of thrombosis: Epidemiologic aspects. Circ Res. 2016;118(9):1340–1347. doi: 10.1161/CIRCRESAHA.115.306841.
  4. Lee JS, Moon T, Kim TH, Kim SY, Choi JY, Lee KB, Kwon YJ, Song SH, Kim SH, Kim HO, Hwang HK, Kim MJ, Lee YK. Deep vein thrombosis in patients with pulmonary embolism: Prevalance, clinical significance and outcome. Vasc Specialist Int. 2016;32(4):166–174. doi: 10.5758/vsi.2016.32.4.166.
  5. Bing R, Chow V, Lau JK, Thomas L, Kritharides L, Ng AC. Prevalence of echocardiography use in patients hospitalized with confirmed acute pulmonary embolism: a real-world observational multicenter study. PLoS One. 2016;11(12):e0168554. doi: 10.1371/journal.pone.0168554.
  6. Virchow R. Gesammalte abhandlungen zur wissenschaftlichen medtzin. Frankfurt: Medinger Sohn & Co; 1856. р. 219–732. (In Germ.)
  7. Wolberg AS, Aleman MM, Leiderman K, Machlus KR. Procoagulant activity in hemostasis and thrombosis: Virchow's triad revisited. Anesth Analg. 2012;114(2):275–285. doi: 10.1213/ANE.0b013e31823a088c.
  8. Vlasov TD, Yashin SM. Arterial and venous thrombosis. Is the Virchow’s triad always valid? Regional blood circulation and microcirculation. 2022;21(1):78–86. (In Russ.) doi: 10.24884/1682-6655-2022-21-1-78-86.
  9. Frangos JA, Eskin SG, McIntire LV, Ives CL. Flow effects on prostacyclin production by cultured human endothelial cells. Science. 1985;227(4693):1477–1479. doi: 10.1126/science.3883488.
  10. Rubanyi GM, Romero JC, Vanhoutte PM. Flow-induced release of endothelium-derived relaxing factor. Am J Physiol. 1986;250(6, Pt 2):H1145–H1149. doi: 10.1152/ajpheart.1986.250.6.H1145.
  11. Esmon CT. The protein C anticoagulant pathway. Arterioscler Thromb. 1992;12(2):135–145. doi: 10.1161/01.atv.12.2.135.
  12. Carmeliet P, Collen D. Gene targeting and gene transfer studies of the plasminogen/plasmin system: Implications in thrombosis, hemostasis, neointima formation, and atherosclerosis. FASEB J. 1995;9(10):934–938. doi: 10.1096/fasebj.9.10.7615162.
  13. Wellicome SM, Thornhill MH, Pitzalis C, Thomas DS, Lanchbury JS, Panayi GS, Haskard DO. A monoclonal antibody that detects a novel antigen on endothelial cells that is induced by tumor necrosis factor, IL-1, or lipopolysaccharide. J Immunol. 1990;144(7):2558–2565.
  14. Pober JS, Cotran RS. The role of endothelial cells in inflammation. Transplantation. 1990;50(4):537–544. doi: 10.1097/00007890-199010000-00001.
  15. Mackman N. Regulation of the tissue factor gene. FASEB J. 1995;9(10):883–889. doi: 10.1096/fasebj.9.10.7615158.
  16. Martin DM, Boys CW, Ruf W. Tissue factor: Molecular recognition and cofactor function. FASEB J. 1995;9(10):852–859. doi: 10.1096/fasebj.9.10.7615155.
  17. Sawa H, Fujii S, Sobel BE. Augmented arterial wall expression of type-1 plasminogen activator inhibitor induced by thrombosis. Arterioscler Thromb. 1992;12(12):1507–1515. doi: 10.1161/01.atv.12.12.1507.
  18. McEver RP, Beckstead JH, Moore KL, Marshall-Carlson L, Bainton DF. GMP-140, a platelet alpha-granule membrane protein, is also synthesized by vascular endothelial cells and is localized in Weibel–Palade bodies. J Clin Invest. 1989;84(1):92–99. doi: 10.1172/JCI114175.
  19. Bevilacqua MP, Pober JS, Mendrick DL, Cotran RS, Gimbrone MA Jr. Identification of an inducible endothelial-leukocyte adhesion molecule. Proc Natl Acad Sci USA. 1987;84(24):9238–9242. doi: 10.1073/pnas.84.24.9238.
  20. Pober JS, Gimbrone MA Jr, Lapierre LA, Mendrick DL, Fiers W, Rothlein R, Springer TA. Overlapping patterns of activation of human endothelial cells by interleukin 1, tumor necrosis factor, and immune interferon. J Immunol. 1986;137(6):1893–1896. doi: 10.4049/jimmunol.137.6.1893.
  21. McIntyre TM, Zimmerman GA, Prescott SM. Leukotrienes C4 and D4 stimulate human endothelial cells to synthesize platelet-activating factor and bind neutrophils. Proc Natl Acad Sci USA. 1986;83(7):2204–2208. doi: 10.1073/pnas.83.7.2204.
  22. Gimbrone MA Jr, Obin MS, Brock AF, Luis EA, Hass PE, Hébert CA, Yip YK, Leung DW, Lowe DG, Kohr WJ, Darbonne WC, Bechtol KB, Baker JB. Endothelial interleukin-8: A novel inhibitor of leukocyte-endothelial interactions. Science. 1989;246(4937):1601–1603. doi: 10.1126/science.2688092.
  23. O'Donnell JS, O'Sullivan JM, Preston RJS. Advances in understanding the molecular mechanisms that maintain normal haemostasis. Br J Haematol. 2019;186(1):24–36. doi: 10.1111/bjh.15872.
  24. Preston RJS, O'Sullivan JM, O'Donnell JS. Advances in understanding the molecular mechanisms of venous thrombosis. Br J Haematol. 2019;186(1):13–23. doi: 10.1111/bjh.15869.
  25. Corral J, de la Morena-Barrio ME, Vicente V. The genetics of antithrombin. Thromb Res. 2018;169:23–29. doi: 10.1016/j.thromres.2018.07.008.
  26. Rosendaal FR, Reitsma PH. Genetics of venous thrombosis. J Thromb Haemost. 2009;7(1):301–304. doi: 10.1111/j.1538-7836.2009.03394.x.
  27. Versteeg HH, Heemskerk JW, Levi M, Reitsma PH. New fundamentals in hemostasis. Physiol Rev. 2013;93(1):327–358. doi: 10.1152/physrev.00016.2011.
  28. Esmon CT. The normal role of activated protein C in maintaining homeostasis and its relevance to critical illness. Crit Care. 2001;5(2):S7–S12. doi: 10.1186/cc1333.
  29. Pabinger I, Schneider B. Thrombotic risk in hereditary antithrombin III, protein C, or protein S deficiency. A cooperative, retrospective study. Gesellschaft fur Thrombose- und Hamostaseforschung (GTH) Study Group on Natural Inhibitors. Arterioscler Thromb Vasc Biol. 1996;16(6):742–748. doi: 10.1161/01.atv.16.6.742.
  30. Allaart CF, Poort SR, Rosendaal FR, Reitsma PH, Bertina RM, Briët E. Increased risk of venous thrombosis in carriers of hereditary protein C deficiency defect. Lancet. 1993;341(8838):134–138. doi: 10.1016/0140-6736(93)90003-y.
  31. Bertina RM, Koeleman BP, Koster T, Rosendaal FR, Dirven RJ, de Ronde H, van der Velden PA, Reitsma PH. Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature. 1994;369(6475):64–67. doi: 10.1038/369064a0.
  32. Dahlbäck B. New molecular insights into the genetics of thrombophilia. Resistance to activated protein C caused by Arg506 to Gln mutation in factor V as a pathogenic risk factor for venous thrombosis. Thromb Haemost. 1995;74(1):139–148.
  33. Rosendaal FR, Koster T, Vandenbroucke JP, Reitsma PH. High risk of thrombosis in patients homozygous for factor V Leiden (activated protein C resistance). Blood. 1995;85(6):1504–1508. doi: 10.1182/blood.V85.6.1504.bloodjournal8561504.
  34. Poort SR, Rosendaal FR, Reitsma PH, Bertina RM. A common genetic variation in the 3'-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. Blood. 1996;88(10):3698–3703. doi: 10.1182/blood.V88.10.3698.bloodjournal88103698.
  35. Simioni P, Tormene D, Tognin G, Gavasso S, Bulato C, Iacobelli NP, Finn JD, Spiezia L, Radu C, Arruda VR. X-linked thrombophilia with a mutant factor IX (factor IX Padua). N Engl J Med. 2009;361(17):1671–1675. doi: 10.1056/NEJMoa0904377.
  36. Ashorobi D, Ameer MA, Fernandez R. Thrombosis. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023. https://www.ncbi.nlm.nih.gov/books/NBK538430/ (access date: 01.06.2023).
  37. Van Vlijmen EF, Wiewel-Verschueren S, Monster TB, Meijer K. Combined oral contraceptives, thrombophilia and the risk of venous thromboembolism: A systematic review and meta-analysis. J Thromb Haemost. 2016;14(7):1393–1403. doi: 10.1111/jth.13349.
  38. Koizume S, Miyagi Y. Tissue factor in cancer-associated thromboembolism: Possible mechanisms and clinical applications. Br J Cancer. 2022;127(12):2099–2107. doi: 10.1038/s41416-022-01968-3.
  39. Sun S, Urbanus RT, Ten Cate H, de Groot PG, de Laat B, Heemskerk JWM, Roest M. Platelet activation mechanisms and consequences of immune thrombocytopenia. Cells. 2021;10(12):3386. doi: 10.3390/cells10123386.
  40. Golebiewska EM, Poole AW. Platelet secretion: from haemostasis to wound healing and beyond. Blood Rev. 2015;29(3):153–162. doi: 10.1016/j.blre.2014.10.003.
  41. Heemskerk JW, Bevers EM, Lindhout T. Platelet activation and blood coagulation. Thromb Haemost. 2002;88(2):186–193. doi: 10.1055/s-0037-1613209.
  42. Furie B, Furie BC, Flaumenhaft R. A journey with platelet P-selectin: The molecular basis of granule secretion, signalling and cell adhesion. Thromb Haemost. 2001;86(1):214–221. doi: 10.1055/s-0037-1616219.
  43. Dole VS, Bergmeier W, Mitchell HA, Eichenberger SC, Wagner DD. Activated platelets induce Weibel–Palade-body secretion and leukocyte rolling in vivo: Role of P-selectin. Blood. 2005;106(7):2334–2339. doi: 10.1182/blood-2005-04-1530.
  44. Yokoyama S, Ikeda H, Haramaki N, Yasukawa H, Murohara T, Imaizumi T. Platelet P-selectin plays an important role in arterial thrombogenesis by forming large stable platelet-leukocyte aggregates. J Am Coll Cardiol. 2005;45(8):1280–1286. doi: 10.1016/j.jacc.2004.12.071.
  45. Ed Rainger G, Chimen M, Harrison MJ, Yates CM, Harrison P, Watson SP, Lordkipanidzé M, Nash GB. The role of platelets in the recruitment of leukocytes during vascular disease. Platelets. 2015;26(6):507–520. doi: 10.3109/09537104.2015.1064881.
  46. Finsterbusch M, Schrottmaier WC, Kral-Pointner JB, Salzmann M, Assinger A. Measuring and interpreting platelet-leukocyte aggregates. Platelets. 2018;29(7):677–685. doi: 10.1080/09537104.2018.1430358.
  47. Li YS, Haga JH, Chien S. Molecular basis of the effects of shear stress on vascular endothelial cells. J Biomech. 2005;38(10):1949–1971. doi: 10.1016/j.jbiomech.2004.09.030.
  48. Lin MC, Almus-Jacobs F, Chen HH, Parry GC, Mackman N, Shyy JY, Chien S. Shear stress induction of the tissue factor gene. J Clin Invest. 1997;99(4):737–744. doi: 10.1172/JCI119219.
  49. Li J, Hou B, Tumova S, Muraki K, Bruns A, Ludlow MJ, Sedo A, Hyman AJ, McKeown L, Young RS, Yuldasheva NY, Majeed Y, Wilson LA, Rode B, Bailey MA, Kim HR, Fu Z, Carter DA, Bilton J, Imrie H, Ajuh P, Dear TN, Cubbon RM, Kearney MT, Prasad RK, Evans PC, Ainscough JF, Beech DJ. Piezo1 integration of vascular architecture with physiological force. Nature. 2014;515(7526):279–282. doi: 10.1038/nature13701.
  50. Welsh JD, Hoofnagle MH, Bamezai S, Oxendine M, Lim L, Hall JD, Yang J, Schultz S, Engel JD, Kume T, Oliver G, Jimenez JM, Kahn ML. Hemodynamic regulation of perivalvular endothelial gene expression prevents deep venous thrombosis. J Clin Invest. 2019;129(12):5489–5500. doi: 10.1172/JCI124791.
  51. Aarts PA, van den Broek SA, Prins GW, Kuiken GD, Sixma JJ, Heethaar RM. Blood platelets are concentrated near the wall and red blood cells, in the center in flowing blood. Arteriosclerosis. 1988;8(6):819–824. doi: 10.1161/01.atv.8.6.819.
  52. Turitto VT, Weiss HJ, Baumgartner HR. The effect of shear rate on platelet interaction with subendothelium exposed to citrated human blood. Microvasc Res. 1980;19(3):352–365. doi: 10.1016/0026-2862(80)90054-0.
  53. Von Brühl ML, Stark K, Steinhart A, Chandraratne S, Konrad I, Lorenz M, Khandoga A, Tirniceriu A, Coletti R, Köllnberger M, Byrne RA, Laitinen I, Walch A, Brill A, Pfeiler S, Manukyan D, Braun S, Lange P, Riegger J, Ware J, Eckart A, Haidari S, Rudelius M, Schulz C, Echtler K, Brinkmann V, Schwaiger M, Preissner KT, Wagner DD, Mackman N, Engelmann B, Massberg S. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med. 2012;209(4):819–835. doi: 10.1084/jem.20112322.
  54. Lipowsky HH. Microvascular rheology and hemodynamics. Microcirculation. 2005;12(1):5–15. doi: 10.1080/10739680590894966.
  55. Hathcock JJ. Flow effects on coagulation and thrombosis. Arterioscler Thromb Vasc Biol. 2006;26(8):1729–1737. doi: 10.1161/01.ATV.0000229658.76797.30.
  56. Neeves KB, Illing DA, Diamond SL. Thrombin flux and wall shear rate regulate fibrin fiber deposition state during polymerization under flow. Biophys J. 2010;98(7):1344–1352. doi: 10.1016/j.bpj.2009.12.4275.
  57. Casa LDC, Ku DN. Thrombus formation at high shear rates. Annu Rev Biomed Eng. 2017;19:415–433. doi: 10.1146/annurev-bioeng-071516-044539.
  58. Kim DA, Ku DN. Structure of shear-induced platelet aggregated clot formed in an in vitro arterial thrombosis model. Blood Adv. 2022;6(9):2872–2883. doi: 10.1182/bloodadvances.2021006248.
  59. Klarhöfer M, Csapo B, Balassy C, Szeles JC, Moser E. High-resolution blood flow velocity measurements in the human finger. Magn Reson Med. 2001;45(4):716–719. doi: 10.1002/mrm.1096.
  60. Lippi G, Favaloro EJ. Venous and arterial thromboses: Two sides of the same coin? Semin Thromb Hemost. 2018;44(3):239–248. doi: 10.1055/s-0037-1607202.
  61. Goldsmith HL, Turitto VT. Rheological aspects of thrombosis and haemostasis: basic principles and applications. ICTH-Report — Subcommittee on Rheology of the International Committee on Thrombosis and Haemostasis. Thromb Haemost. 1986;55(3):415–435. doi: 10.1055/s-0038-1661576.
  62. Zhao W, Wei Z, Xin G, Li Y, Yuan J, Ming Y, Ji C, Sun Q, Li S, Chen X, Fu W, Zhu Y, Niu H, Huang W. Piezo1 initiates platelet hyperreactivity and accelerates thrombosis in hypertension. J Thromb Haemost. 2021;19(12):3113–3125. doi: 10.1111/jth.15504.
  63. Fu H, Jiang Y, Yang D, Scheiflinger F, Wong WP, Springer TA. Flow-induced elongation of von Willebrand factor precedes tension-dependent activation. Nat Commun. 2017;8(1):324. doi: 10.1038/s41467-017-00230-2.
  64. Farndale RW, Siljander PR, Onley DJ, Sundaresan P, Knight CG, Barnes MJ. Collagen-platelet interactions: Recognition and signalling. Biochem Soc Symp. 2003;(70):81–94. doi: 10.1042/bss0700081.
  65. Nieswandt B, Watson SP. Platelet-collagen interaction: is GPVI the central receptor? Blood. 2003;102(2):449–461. doi: 10.1182/blood-2002-12-3882.
  66. Ruggeri ZM. The role of von Willebrand factor in thrombus formation. Thromb Res. 2007;120(Suppl 1):S5–S9. doi: 10.1016/j.thromres.2007.03.011.
  67. Montague SJ, Andrews RK, Gardiner EE. Mechanisms of receptor shedding in platelets. Blood. 2018;132(24):2535–2545. doi: 10.1182/blood-2018-03-742668.
  68. Peters CG, Michelson AD, Flaumenhaft R. Granule exocytosis is required for platelet spreading: differential sorting of α-granules expressing VAMP-7. Blood. 2012;120(1):199–206. doi: 10.1182/blood-2011-10-389247.
  69. Litvinov RI, Nagaswami C, Vilaire G, Shuman H, Bennett JS, Weisel JW. Functional and structural correlations of individual alphaIIbbeta3 molecules. Blood. 2004;104(13):3979–3985. doi: 10.1182/blood-2004-04-1411.
  70. Bledzka K, Smyth SS, Plow EF. Integrin αIIbβ3: From discovery to efficacious therapeutic target. Circ Res. 2013;112(8):1189–200. doi: 10.1161/CIRCRESAHA.112.300570.
  71. Litvinov RI, Weisel JW. What is the biological and clinical relevance of fibrin? Semin Thromb Hemost. 2016;42(4):333–343. doi: 10.1055/s-0036-1571342.
  72. Bark DL Jr, Ku DN. Wall shear over high degree stenoses pertinent to atherothrombosis. J Biomech. 2010;43(15):2970–2977. doi: 10.1016/j.jbiomech.2010.07.011.
  73. Comerota AJ, Kamath V. Thrombolysis for iliofemoral deep venous thrombosis. Expert Rev Cardiovasc Ther. 2013;11(12):1631–1638. doi: 10.1586/14779072.2013.852955.
  74. Cines DB, Lebedeva T, Nagaswami C, Hayes V, Massefski W, Litvinov RI, Rauova L, Lowery TJ, Weisel JW. Clot contraction: compression of erythrocytes into tightly packed polyhedra and redistribution of platelets and fibrin. Blood. 2014;123(10):1596–1603. doi: 10.1182/blood-2013-08-523860.
  75. Tutwiler V, Litvinov RI, Lozhkin AP, Peshkova AD, Lebedeva T, Ataullakhanov FI, Spiller KL, Cines DB, Weisel JW. Kinetics and mechanics of clot contraction are governed by the molecular and cellular composition of the blood. Blood. 2016;127(1):149–159. doi: 10.1182/blood-2015-05-647560.
  76. Mackman N. Triggers, targets and treatments for thrombosis. Nature. 2008;451(7181):914–918. doi: 10.1038/nature06797.
  77. Liebeskind DS, Sanossian N, Yong WH, Starkman S, Tsang MP, Moya AL, Zheng DD, Abolian AM, Kim D, Ali LK, Shah SH, Towfighi A, Ovbiagele B, Kidwell CS, Tateshima S, Jahan R, Duckwiler GR, Viñuela F, Salamon N, Villablanca JP, Vinters HV, Marder VJ, Saver JL. CT and MRI early vessel signs reflect clot composition in acute stroke. Stroke. 2011;42(5):1237–1243. doi: 10.1161/STROKEAHA.110.605576.
  78. Singh P, Kaur R, Kaur A. Clot composition and treatment approach to acute ischemic stroke: The road so far. Ann Indian Acad Neurol. 2013;16(4):494–497. doi: 10.4103/0972-2327.120433.
  79. Silvain J, Collet JP, Nagaswami C, Beygui F, Edmondson KE, Bellemain-Appaix A, Cayla G, Pena A, Brugier D, Barthelemy O, Montalescot G, Weisel JW. Composition of coronary thrombus in acute myocardial infarction. J Am Coll Cardiol. 2011;57(12):1359–1367. doi: 10.1016/j.jacc.2010.09.077.
  80. Chernysh IN, Nagaswami C, Kosolapova S, Peshkova AD, Cuker A, Cines DB, Cambor CL, Litvinov RI, Weisel JW. The distinctive structure and composition of arterial and venous thrombi and pulmonary emboli. Sci Rep. 2020;10(1):5112. doi: 10.1038/s41598-020-59526-x.
  81. Khismatullin RR, Nagaswami C, Shakirova AZ, Vrtková A, Procházka V, Gumulec J, Mačák J, Litvinov RI, Weisel JW. Quantitative morphology of cerebral thrombi related to intravital contraction and clinical features of ischemic stroke. Stroke. 2020;51(12):3640–3650. doi: 10.1161/STROKEAHA.120.031559.
  82. Tomaiuolo M, Litvinov RI, Weisel JW, Stalker TJ. Use of electron microscopy to study platelets and thrombi. Platelets. 2020;31(5):580–588. doi: 10.1080/09537104.2020.1763939.
  83. Khismatullin RR, Abdullayeva S, Peshkova AD, Sounbuli K, Evtugina NG, Litvinov RI, Weisel JW. Extent of intravital contraction of arterial and venous thrombi and pulmonary emboli. Blood Adv. 2022;6(6):1708–1718. doi: 10.1182/bloodadvances.2021005801.
  84. Litvinov RI, Weisel JW. Blood clot contraction: Mechanisms, pathophysiology, and disease. Res Pract Thromb Haemost. 2022;7(1):100023. doi: 10.1016/j.rpth.2022.100023.
  85. Nakata T, Hirokawa N. Cytoskeletal reorganization of human platelets after stimulation revealed by the quick-freeze deep-etch technique. J Cell Biol. 1987;105(4):1771–1780. doi: 10.1083/jcb.105.4.1771.
  86. Carr ME Jr. Development of platelet contractile force as a research and clinical measure of platelet function. Cell Biochem Biophys. 2003;38(1):55–78. doi: 10.1385/CBB:38:1:55.
  87. Tutwiler V, Wang H, Litvinov RI, Weisel JW, Shenoy VB. Interplay of platelet contractility and elasticity of fibrin/erythrocytes in blood clot retraction. Biophys J. 2017;112(4):714–723. doi: 10.1016/j.bpj.2017.01.005.
  88. Tutwiler V, Mukhitov AR, Peshkova AD, Le Minh G, Khismatullin RR, Vicksman J, Nagaswami C, Litvinov RI, Weisel JW. Shape changes of erythrocytes during blood clot contraction and the structure of polyhedrocytes. Sci Rep. 2018;8(1):17907. doi: 10.1038/s41598-018-35849-8.
  89. Litvinov RI, Peshkova AD. Contraction (retraction) of blood clots and thrombi: Pathogenic and clinical significance. Almanakh klinicheskoy meditsiny. 2018;46(7):662–671. (In Russ.) doi: 10.18786/2072-0505-2018-46-7-662-671.
  90. Tutwiler V, Peshkova AD, Le Minh G, Zaitsev S, Litvinov RI, Cines DB, Weisel JW. Blood clot contraction differentially modulates internal and external fibrinolysis. J Thromb Haemost. 2019;17(2):361–370. doi: 10.1111/jth.14370.
  91. Peshkova AD, Malyasyov DV, Bredikhin RA, Le Minh G, Andrianova IA, Tutwiler V, Nagaswami C, Weisel JW, Litvinov RI. Reduced contraction of blood clots in venous thromboembolism is a potential thrombogenic and embologenic mechanism. TH Open. 2018;2(1):e104–e115. doi: 10.1055/s-0038-1635572.
  92. Evtugina NG, Peshkova AD, Pichugin AA, Weisel JW, Litvinov RI. Impaired contraction of blood clots precedes and predicts postoperative venous thromboembolism. Sci Rep. 2020;10(1):18261. doi: 10.1038/s41598-020-75234-y.
  93. Le Minh G, Peshkova AD, Andrianova IA, Sibgatullin TB, Maksudova AN, Weisel JW, Litvinov RI. Impaired contraction of blood clots as a novel prothrombotic mechanism in systemic lupus erythematosus. Clin Sci (Lond). 2018;132(2):243–254. doi: 10.1042/CS20171510.
  94. Peshkova AD, Safiullina SI, Asarova DG, Khafizova AF, Ataullakhanov FI, Litvinov RI. Assessment of hemostatic function in women with a history of recurrent pregnancy loss using thrombodynamics and blood clot contraction tests. Akusherstvo i Ginekologiia. 2019;(12):111–119. (In Russ.) doi: 10.18565/aig.2019.12.111-119.
  95. Peshkova AD, Evdokimova TA, Sibgatullin TB, Ataullakhanov FI, Litvinov RI. Changes in the parameters of thrombodynamics and blood clot contraction in patients with rheumatoid arthritis. Rheumatology Science and Practice. 2020;58(3):294–303. (In Russ.) doi: 10.14412/1995-4484-2020-294-303.
  96. Mazurov AV, Khaspekova SG, Vasiliev SA. Diagnostics of thrombocytopenias. Therapeutic Archive. 2018;90(7):4–13. (In Russ.) doi: 10.26442/terarkh20189074-13.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Virchow’s triad and venous thrombosis

Download (46KB)

© 2024 Eco-Vector

Creative Commons License

This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies