Neurochemical markers of coping intelligence

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Coping intelligence is associated with an individual’s ability to overcome stressful situations, maintaining health potential and increasing the potential for personal development. This study is a systematic review of biochemical and neuronal markers of different levels of coping intelligence, which determine different lines of human development in stressful situations. 45 publications selected from the Nature and RSCI electronic databases were analyzed, the results were summarized in three sections: (1) genetic and epigenetic correlates of individual differences in coping intelligence; (2) neurochemical systems of coping intelligence (glucocorticoids, interleukins, brain-derived neurotrophic factor, monoamines); (3) manifestations of stable and regressive lines of development of the subject in stressful situations. Molecular genetic determinants of coping intelligence were systematized according to the following systems: serotonergic, dopaminergic, noradrenergic, etc. The interaction of neurochemical systems (catecholamines, glucocorticoids, interleukins, brain-derived neurotrophic factor, monoamines) reflects the peculiarities of the stress reaction in humans and determines the development line of the subject in stressful situations. Genetic predisposition, unfavorable epigenetic factors and chronic stress increase the risk of developing stress-related diseases (regressive line of development). A stable stress-coping system is associated with a balance of mineralocorticoid and glucocorticoid receptors, pro-inflammatory and anti-inflammatory cytokines, an optimal ratio of cortisol and dehydroepiandrosterone sulfate, a sufficient level of brain-derived neurotrophic factor, and a healthy microbiota (stable line). A review of the literature indicated the need to analyze neurochemical systems (monoamines, opioid receptors, acetylcholine, microbiota) that determine a high level of coping intelligence (a progressive line of human development in stressful situations). The study of neurochemical markers of coping intelligence should be accompanied by personality analysis (mental representations of stress, coping strategies) to provide personalized medical care and preserve a person’s health potential.

About the authors

Irina O. Kuvaeva

Ural Federal University; Institute of Psychology of the Russian Academy of Sciences

Author for correspondence.
Email: irina.kuvaeva@urfu.ru
ORCID iD: 0000-0001-5451-0725
SPIN-code: 7244-9678

Cand. Sci. (Psychol.), Assoc. Prof., Depart. of Pedagogy and Educational Psychology, Ural Federal University; Researcher, Druzhinin Laboratory of Psychology of Abilities and Mental Resources

Russian Federation, Ekaterinburg; Moscow

Elena V. Volkova

Institute of Psychology of the Russian Academy of Sciences

Email: volkovaev@ipran.ru
ORCID iD: 0000-0003-3809-3639
SPIN-code: 8375-5018

D. Sci. (Psychol.), Chief Researcher, Head of Laboratory, Druzhinin Laboratory of Psychology of abilities and Mental Resources

Russian Federation, Moscow

References

  1. Sapol'ski R. Psikhologiya stressa. (Psychology of stress.) SPb.: Piter; 2015. 480 p. (In Russ.)
  2. Val'dman AV, Kozlovskaya MM, Medvedev OS. Farmakologicheskaya regulyatsiya emotsional'nogo stressa. (Pharmacological regulation of emotional stress.) М.: Meditsina; 1979. 360 p. (In Russ.)
  3. Agorastos A, Chroustos G. The neuroendocrinology of stress: the stress-related continuum of chronic disease development. Mol Psychiatry. 2022;27:502–513. doi: 10.1038/s41380-021-01224-9.
  4. Gold PW. The organization of the stress system and its dysregulation in depressive illness. Mol Psychiatry. 2015;20(1):32–47. doi: 10.1038/mp.2014.163.
  5. Meerson FZ, Pshennikova MG. Adaptatsiya k stressornym situatsiyam i fizicheskim nagruzkam. (Adaptation to stressful situations and physical activity.) M.: Meditsina; 1988. 256 p. (In Russ.)
  6. Kukhtinskaya LV, Zuraev AV, Budevich VA, Mosse IB. Modern concepts of human psychoemotional sustainable genetic determinants. Molekulyarnaya i prikladnaya genetika. 2016;20:96–109. (In Russ.) EDN: YGBOPJ.
  7. Volkova EV, Kuvaeva IO. Sovladayushchiy intellekt: differentsionno-integratsionnoy podkhod. (Coping intelligence: a differentiation-integration approach.) M.: Institut psikhologii RAN; 2023. 440 p. (In Russ.)
  8. Volkova EV, Kuvaeva IO. The measure of hierarchy of the concept stress and copings in freshmen of different cultures. Siberian Journal of Psychology. 2022;(86):48–65. (In Russ.) doi: 10.17223/17267080/86/3.
  9. Kuvaeva IO, Volkova EV. Biochemical correlates of individual differences in coping intelligence. Natural Systems of Mind. 2022;2(2):18–34. doi: 10.38098/nsom_2022_02_02_03.
  10. Libin E. Multidimensional positive coping model. Monographs of coping institute; 2003. 188 p.
  11. Libin E. Coping intelligence: Efficient life stress management. Front Psychol. 2017;8:302. doi: 10.3389/fpsyg.2017.00302.
  12. Zuev KV, Volkova EV. Publication culture of russian science: International perspectives. Natural System of Mind. 2022;2(1):5–13. doi: 10.38098/nsom_2022_02_01_01.
  13. Maksimenko LV. Epigenetics as an evidence base of the impact of lifestyle on health and disease. Russian Journal of Preventive Medicine. 2019;(2):115–119. (In Russ.) doi: 10.17116/profmed201922021115.
  14. Chistyakova NV, Savostoyanov KV. The hypothalamic-pituitary-adrenal axis and genetic variants affecting its reactivity. Russian Journal of Genetics. 2011;47(8): 895–906. (In Russ.) doi: 10.1134/S1022795411080035.
  15. Sapol'ski R. Kto my takie? Geny, nashe telo, obshchestvo. (Who are we? Genes, our body, society.) M.: Alpina non-fiction; 2023. 256 p. (In Russ.)
  16. Dyuzhikova NA, Skomorokhova EB, Vaido AI. Epigenetic mechanisms in post-stress states. Uspekhi fiziologicheskikh nauk. 2015;46(1):47–75. (In Russ.) EDN: TOESOZ.
  17. Kolyubaeva SN, Ivanov AM, Protasov OV, Krivoruchko AB, Eliseeva MI. Genetic predictors of regulation of the activity of a stress-system. Russian Military Medical Academy Reports. 2020;(2):35–45. (In Russ.) doi: 10.17816/rmmar60321.
  18. Feder A, Nestler EJ, Charney DS. Psychobiology and molecular genetics of resilience. Nat Rev Neurosci. 2009;10:446–457. doi: 10.1038/nrn2649.
  19. Kredlow AM, Fenster RJ, Laurent ES. Prefrontal cortex, amygdala, and threat processing: Implications for PTSD. Neuropsychopharmacology. 2022;47:247–259. doi: 10.1038/s41386-021-01155-7.
  20. Malhi GS, Das P, Bell E. Modelling resilience in adolescence and adversity: A novel framework to inform research and practice. Transl Psychiatry. 2019;9:316. doi: 10.1038/s41398-019-0651-y.
  21. Zannas AS, Wiechmann T, Gassen NC. Gene–stress–epigenetic regulation of FKBP5: Clinical and translational implications. Neuropsychopharmacology. 2016;41:261–274. doi: 10.1038/npp.2015.235.
  22. Stein DJ, Newman TK, Savitz J. Warriors versus worriers: The role of COMT gene variants. CNS Spectr. 2006;10:745–748. doi: 10.1017/s1092852900014863.
  23. Danese A, Lewis SJ. Psychoneuroimmunology of early-life stress: The hidden wounds of childhood trauma? Neuropsychopharmacology. 2017;42:99–114. doi: 10.1038/npp.2016.198.
  24. McEwen B, Nasca C, Gray J. Stress effects on neuronal structure: Hippocampus, amygdala, and prefrontal cortex. Neuropsychopharmacology. 2016;41:3–23. doi: 10.1038/npp.2015.171.
  25. Peña CJ, Smith M, Ramakrishnan A, Cates HM, Bagot RS, Kronman HG, Patel B, Chang AB, Purushothaman I, Dudley J, Morishita H, Shen L, Nestler EJ. Early life stress alters transcriptomic patterning across reward circuitry in male and female mice. Nat Commun. 2019;10:5098. doi: 10.1038/s41467-019-13085-6.
  26. Lopez M, Ruiz MO, Rovnaghi CR. The social ecology of childhood and early life adversity. Pediatr Res. 2021;89:353–367. doi: 10.1038/s41390-020-01264-x.
  27. Laird KT, Krause B, Funes C. Psychobiological factors of resilience and depression in late life. Transl Psychiatry. 2019;9:88. doi: 10.1038/s41398-019-0424-7.
  28. Kozlov AI, Kozlova MA. Cortisol as a marker of stress. Human physiology. 2014;40(2):224–236. doi: 10.7868/S013116461402009X.
  29. Faraji J, Soltanpour N, Lotfi H. Lack of social support raises stress vulnerability in rats with a history of ancestral stress. Sci Rep. 2017;7:5277. doi: 10.1038/s41598-017-05440-8.
  30. Vindas MA, Fokos S, Pavlidis M. Early life stress induces long-term changes in limbic areas of a teleost fish: The role of catecholamine systems in stress coping. Sci Rep. 2018;8:5638. doi: 10.1038/s41598-018-23950-x.
  31. Nikolaeva EI. Psikhofiziologiya. (Psychophysiology.) SPb.: Piter; 2019. 704 p. (In Russ.)
  32. Ronald de Kloet E, Joels M. The cortisol switch between vulnerability and resilience. Mol Psychiatry. 2023. doi: 10.1038/s41380-022-01934-8.
  33. Ushakov AV, Ivanchenko VS, Gagarina AA. Pathogenetic mechanisms of the formation of persistent arterial hypertension during chronic psychoemotional stress. Arterialnaya gipertenziya. 2016;22(2):128–143. (In Russ.) doi: 10.18705/1607-419X-2016-22-2-128-143.
  34. Tokarev AR. Neuro-cytokine mechanisms of acute stress (literature review). Vestnik novykh meditsinskikh tekhnologiy. Elektronnoe izdanie. 2019;(3):194–204. (In Russ.) doi: 10.24411/2075-4094-2019-16469.
  35. Teplyakova OV, Kuvaeva IO, Volkova EV. Stress, inflammation and coping strategies — association with rheumatological pathology. Kazan Medical Journal. 2023;104(6):885–895. (In Russ.) doi: 10.17816/KMJ568607.
  36. Schwartz M, Shechter R. Protective autoimmunity functions by intracranial immunosurveillance to support the mind: The missing link between health and disease. Mol Psychiatry. 2010;15:342–354. doi: 10.1038/mp.2010.31.
  37. Ménard C, Pfau ML, Hodes GE. Immune and neuroendocrine mechanisms of stress vulnerability and resilience. Neuropsychopharmacology. 2017;42:62–80. doi: 10.1038/npp.2016.90.
  38. Shalaginova IG, Matskova LV, Gunitseva NM, Vakoliuk IA. Effects of the intestinal microbiota on epigenetic mechanisms involved in the development of post-stress neuro-inflammation. Ecological genetics. 2019;17(4):91–102. (In Russ.) doi: 10.17816/ecogen17491-102.
  39. Dinan TG, Cryan JF. Microbes, immunity, and behavior: Psychoneuroimmunology meets the microbiome. Neuropsychopharmacology. 2017;42:178–192. doi: 10.1038/npp.2016.103.
  40. Dubovaya AV, Yaroshenko SYa, Prilutskaya OA. Chronic stress and brain-derived neurotrophic factor. Prakticheskaya meditsina. 2021;19(2):19–27. (In Russ.) doi: 10.32000/2072-1757-2021-2-19-27.
  41. Faustova AG, Krasnorutskaya ON. Role of brain-derived neurotrophic factor in coping with the consequences of psychotraumatic events. IP Pavlov Russian Medical Biological Herald. 2021;29(4):521–530. (In Russ.) doi: 10.18413/2658-6533-2022-8-1-0-2.
  42. Linz R, Puhlmann LMC, Apostolakou F. Acute psychosocial stress increases serum BDNF levels: an antagonistic relation to cortisol but no group differences after mental training. Neuropsychopharmacology. 2019;44:1797–1804. doi: 10.1038/s41386-019-0391-y.
  43. Price RB, Duman R. Neuroplasticity in cognitive and psychological mechanisms of depression: An integrative model. Mol Psychiatry. 2020;25(3):530–543. doi: 10.1038/s41380-019-0615-x.
  44. Dubovaya AV, Iaroshenko SYa, Prilutskaya OA. Chronic stress and brain-derived neurotrophic factor. Prakticheskaya meditsina. 2021;19(2):19–27. (In Russ.)
  45. Egeland M, Zunszain PA, Pariante CM. Molecular mechanisms in the regulation of adult neurogenesis during stress. Nat Rev Neurosci. 2015;16:189–200. doi: 10.1038/nrn3855.
  46. Gulyaeva NV. The neurochemistry of stress: the chemistry of the stress response and stress vulnerability. Neyrokhimiya. 2018;35(2):111–114. (In Russ.) doi: 10.7868/S1027813318020012.
  47. Voronezhskaya EE, Melnikova VI, Ivashkin EG. Monoamines as adaptive developmental regulators: phenomenon and mechanisms of action. Zhurnal vysshey nervnoy deyatelnosti im IP Pavlova. 2021;71(3):295–305. (In Russ.) doi: 10.31857/S0044467721030126.
  48. McEwen BS, Bowles NP, Gray JD. Mechanisms of stress in the brain. Nat Neurosci. 2015;18:1353–1363. doi: 10.1038/nn.4086.
  49. Bakhchina AV. Psychophysiology of stress. In: Psikhofiziologiya. (Psychophysiology.) Textbook for universities. 5th edition. SPb.: Piter; 2022. р. 362–380. (In Russ.)
  50. Semenkov VF, Karandashov VI, Mikhailova TA. Stress and human aging. Vestnik RAEN. 2011;(4):72–78. (In Russ.) EDN: TXIKWH.
  51. Loseva EV. Psychosocial stress of overpopulation (crowding): Negative consequences for the human body and rodents. Integrativnaya fiziologiya. 2021;2(1):33–40. (In Russ.) doi: 10.33910/2687-1270-2021-2-1-33-40.
  52. Rakesh G, Morey RA, Zannas AS. Resilience as a translational endpoint in the treatment of PTSD. Mol Psychiatry. 2019;24:1268–1283. doi: 10.1038/s41380-019-0383-7.
  53. Grayson M. Irritable bowel syndrome. Nature. 2016;533:101. doi: 10.1038/533S101a.
  54. Naumova EL, Beloborodova EI, Burkovskaya VA, Kupriyanova IE. Exchange of serotonin and hydrocortisone in patients with irritated bowel syndrome. Vestnik of Saint Petersburg University. Medicine. 2012;11(4):52–55. (In Russ.) EDN: PLMSDF.
  55. Enck P, Aziz Q, Barbara G. Irritable bowel syndrome. Nat Rev Dis Primers. 2016;2:16014. doi: 10.1038/nrdp.2016.14.
  56. Cattaneo A, Cattane N, Begni V. The human BDNF gene: peripheral gene expression and protein levels as biomarkers for psychiatric disorder. Transl Psychiatry. 2016;6:e958. doi: 10.1038/tp.2016.214.
  57. Vandael D, Gounko NV. Corticotropin releasing factor-binding protein (CRF-BP) as a potential new therapeutic target in Alzheimer’s disease and stress disorders. Transl Psychiatry. 2019;9:272. doi: 10.1038/s41398-019-0581-8.
  58. Hill MN, Campolongo P, Yehuda R. Integrating endocannabinoid signaling and cannabinoids into the biology and treatment of posttraumatic stress disorder. Neuropsychopharmacology. 2018;43:80–102. doi: 10.1038/npp.2017.162.

Supplementary files

Supplementary Files
Action
1. JATS XML

© 2024 Eco-Vector

Creative Commons License

This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.





Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».