Children and adolescents’ obesity is the 21st century health problem

Cover Page

Cite item

Abstract

The article presents a literature review which devotes to one of the major issues of healthcare today — obesity in children and adolescents. The consequences of childhood obesity, methods of determination and pathophysiology of obesity are described in detail. It was considered the influence of genetic factors in the formation of obesity, the effect of intestinal microbiota in the pathogenesis of obesity. The literature search was carried out in the databases of NCBI, PubMed, PubMed Central, eLIBRARY.ru, etc. Obesity in children and adolescents is one of the most important issues for people from most countries in today's world. Worldwide, the prevalence of this pathology has increased over the past three decades. Obesity in children and adolescents is a complex, multifactorial disease in which genetic and non-genetic factors can be identified. Although the vast majority of childhood obesity incidents are exogenous, a small proportion may have endogenous causes. Currently, particular importance is attached to the study of hereditary predictors of obesity and its main complications. Being a complex and inherited trait (disease), obesity is a consequence of the interaction of genetic predisposition, epigenetics, metagenomics, and the environment. Also, recent experimental and clinical data show the importance of intestinal microbiota, which can cause overweight and obesity in some patients. Molecular genetic studies have confirmed changes in intestinal biocenosis with developing obesity in children and adolescents. Obesity, which began in childhood, causes short-term and long-term adverse effects on physical and psychosocial health and largely becomes a risk factor for the development of various metabolic disorders and cardiovascular pathology. Understanding the multifactorial mechanisms involved in the formation of obesity in children and adolescents provides opportunities for the early prevention of obesity and its complications.

About the authors

O V Bocharova

City Children's Outpatient Clinic №4

Author for correspondence.
Email: bocharova.olga.vl@gmail.com
SPIN-code: 9653-5880
Russian Federation, Rostov-on-Don, Russia

E D Teplyakova

Rostov State Medical University; Department of Health

Email: bocharova.olga.vl@gmail.com
ORCID iD: 0000-0002-3585-7026
SPIN-code: 5864-9883

doctor of medical Sciences Professor; Deputy head of the health Department

Russian Federation, Rostov-on-Don, Russia; Rostov-on-Don, Russia

References

  1. Gregg E.W., Shaw J.E. Global health effects of overweight and obesity. N. Engl. J. Med. 2017; 377 (1): 80–81. doi: 10.1056/NEJMe1706095.
  2. Ogden C.L., Carroll M.D., Lawman H.G. et al. Trends in obesity prevalence among children and adolescents in the United States, 1988–1994 through 2013–2014. JAMA. 2016; 315: 2292–2299. doi: 10.1001/jama.2016.6361.
  3. Abarca-Gómez L., Abdeen Z.A., Hamid Z.A. et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 1289 million children, adolescents, and adults. Lancet. 2017; 390: 2627–2642. doi: 10.1016/S0140-6736(17)32129-3.
  4. Weihrauch-Blüher S., Wiegand S. Risk factors and implications of childhood obesity. Curr. Obes. Rep. 2018; 7: 254–259. doi: 10.1007/s13679-018-0320-0.
  5. Simmonds M., Burch J., Llewellyn A. et al. The use of measures of obesity in childhood for predicting obesity and the development of obesity-related diseases in adulthood: a syste­matic review and meta-analysis. Health Technol. Assess. 2015; 19: 1–336. doi: 10.3310/hta19430.
  6. Lir D.N., Kozlov A.I., Vershubsky G.G. et al. Overweight and obesity in children 7–17 years old in Northwestern Russia and the Cis-Urals. Vestnik Moskovskogo universiteta. Seria XXIII. Antropologia. 2018; (3): 55–60. (In Russ.) doi: 10.32521/2074-8132.2018.3.055-060.
  7. Tutelyan V.L., Baturin A.K., Kon I.Ya. et al. Prevalence of overweight and obesity in child population of Russia: multicenter study. Pediatria. 2014; (5): 28–31. (In Russ.)
  8. GBD 2015 Obesity Collaborators, Afshin A., Forouzanfar M.H., Reitsma M.B. et al. Health effects of overweight and obesity in 195 countries over 25 years. N. Engl. J. Med. 2017; 377: 13–27. doi: 10.1056/NEJMoa1614362.
  9. Ward Z.J., Long M.W., Resch S.C. et al. Simulation of growth trajectories of childhood obesity into adulthood. N. Engl. J. Med. 2017; 377 (22): 2145–2153. doi: 10.1056/NEJMoa1703860.
  10. Llewellyn A., Simmonds M., Owen C.G. et al. Childhood obesity as a predictor of morbidity in adulthood: a systematic review and meta-analysis. Obes. Rev. 2016; 17 (1): 56–67. doi: 10.1111/obr.12316.
  11. Mirza N.M., Yanovski J.A. Prevalence and Consequen­ces of Pediatric Obesity. In: Handbook of obesity: Epi­demiology, etio­logy, and physiopathology. Taylor & Francis Ltd.; Boca Raton, FL, USA. 2014; 55–74.
  12. Kelsey M.M., Zaepfel A., Bjornstad P. et al. Age-­related consequences of childhood obesity. Gerontology. 2014; 60: 222–228. doi: 10.1159/000356023.
  13. Güngör N. Overweight and obesity in children and adolescents. J. Clin. Res. Pediatr. Endocrinol. 2014; 6 (3): 129–143. doi: 10.4274/Jcrpe.1471.
  14. Bout-Tabaku S., Shults J., Zemel B.S. et al. Obesity is associated with greater valgus knee alignment in pubertal children, and higher body mass index is associated with greater variability in knee alignment in girls. J. Rheumatol. 2015; 42: 126–133. doi: 10.3899/jrheum.131349.
  15. Gregory J.W. Prevention of obesity and metabo­lic syndrome in children. Front. Endocrinol. (Lausanne). 2019; 10: 669. doi: 10.3389/fendo.2019.00669.
  16. Horan M., Gibney E., Molloy E. et al. Methodo­logies to assess paediatric adiposity. Ir. J. Med. Sci. 2015; 184: 53–68. doi: 10.1007/s11845-014-1124-1.
  17. Sorokman T.V. Anthropometric standards and clinical features of obesity in children. Mezhdunarodnyy endokrinologicheskiy zhurnal. 2014; (8): 25–28. (In Russ.)
  18. Cornier M.A., Després J.P., Davis N. et al. Asses­sing adi­posity: a scientific statement from the American Heart Asso­ciation. Circulation. 2011; 124 (18): 1996–2019. doi: 10.1161/CIR.0b013e318233bc6a.
  19. Shumei X.U., Ying Xue. Pediatric obesity: Causes, symptoms, prevention and treatment. Exp. Ther. Med. 2016; 11 (1): 15–20. doi: 10.3892/etm.2015.2853.
  20. Campbell M.K. Biological, environmental and social influences on childhood obesity. Pediatr. Res. 2016; 79 (1–2): 205–211. doi: 10.1038/pr.2015.208.
  21. Seburg E.M., Olson-Bullis B.A., Bredeson D.M. et al. A review of primary care-based childhood obesity prevention and treatment interventions. Curr. Obes. Rep. 2015; 4 (2): 157–173. doi: 10.1007/s13679-015-0160-0.
  22. Tagi V.M., Giannini C., Chiarelli F. Insulin resistance in children. Front. Endocrinol. 2019; 10: 342. doi: 10.3389/fendo.2019.00342.
  23. Hosseini-Esfahani F., Mirmiran P., Daneshpour M.S. et al. Western dietary pattern interaction with APOC3 polymorphism in the risk of metabolic syndrome: tehran Lipid and Glucose Study. J. Nutrigenet. Nutrigenom. 2014; 7: 105–117. doi: 10.1159/000365445.
  24. Hosseini-Esfahani F., Hosseinpour-Niazi S., Asgha­ri G. et al. Nutrition and cardio-metabolic risk factors: findings from 20 years of the tehran lipid and glucose study. Int. J. Endocrinol. Metab. 2018; 16: e84772. doi: 10.5812/ijem.84791.
  25. Fairbrother U., Kidd E., Malagawuma T. et al. Genetics of severe obesity. Curr. Diab. Rep. 2018; 18: 1–9. doi: 10.1007/s11892-018-1053-x.
  26. Haws R.M., Fletty K.L., McIntee T.J. Obesity and hyperphagia therapy in Bardet Biedl syndrome with a melanocortin-4 receptor agonist. Obesity Week 2017. https://2017.obesityweek.com/abstract/obesity-and-hyperphagia-therapy-in-bardet-biedl-syndrome-with-a-melanocortin-4-receptor-­agonist/index.html (access date: 15.02.2020).
  27. Locke A.E., Kahali B., Berndt S.I. et al. Genetic stu­dies of body mass index yield new insights for obesity bio­logy. Nature. 2015; 518: 197–206. doi: 10.1038/nature14177.
  28. Yengo L., Sidorenko J., Kemper K.E. et al. Meta-­analysis of genome-wide association studies for height and body mass index in ~700,000 individuals of Euro­pean ancestry. Hum. Mol. Genet. 2018; 27: 3641–3649. doi: 10.1093/hmg/ddy271.
  29. Goodarzi M.O. Genetics of obesity: what genetic association studies have taught us about the biology of obesity and its complications. Lancet Diabetes Endocrinol. 2018; 6: 223–236. doi: 10.1016/S2213-8587(17)30200-0.
  30. Turcot V., Lu Y., Highland H.M. et al. Protein-­altering variants associated with body mass index implicate pathways that control energy intake and expenditure underpinning obesity. Nat. Genet. 2018; 50: 26–41. doi: 10.1038/s41588-017-0011-x.
  31. Stryjecki C., Alyass A., Meyre D. Ethnic and popu­lation differences in the genetic predisposition to human obesity. Obesity Rev. 2018; 19: 62–80. doi: 10.1111/obr.12604.
  32. Baskin B., Choufani S., Chen Y.A. et al. High frequency of copy number variations (CNVs) in the chromosome 11p15 region in patients with Beckwith–Wiedemann syndrome. Hum. Genet. 2014; 133: 321–330. doi: 10.1007/s00439-013-1379-z.
  33. Selvanayagam T., Walker S., Gazzellone M.J. et al. Genome-wide copy number variation analysis identifies novel candidate loci associated with pediatric obesity. Eur. J. Hum. Genet. 2018; 26: 1588–1596. doi: 10.1038/s41431-018-0189-0.
  34. Quan L.L., Wang H., Tian Y. et al. Association of fat-mass and obesity-associated gene FTO rs9939609 polymorphism with the risk of obesity among children and adoles­cents: a meta-analysis. Eur. Rev. Med. Pharmacol. Sci. 2015; 19 (4): 614–623. PMID: 25753879.
  35. Reuter C.P., de Mello E.D., da Silva P.T. et al. Overweight and obesity in schoolchildren: ­Hierarchical ana­lysis of associated demographic, behavioral, and biolo­gical factors. J. Obes. 2018; 2018: 6128034. doi: 10.1155/2018/6128034.
  36. Schwartz M.W., Seeley R.J., Zeltser L.M. et al. Obesity pathogenesis: An Endocrine Society Scientific Statement. ­Endocr. Rev. 2017; 38 (4): 267–296. doi: 10.1210/er.2017-00111.
  37. Varnaccia G., Zeiher J. Factors influencing childhood obesity — the establishment of a population-wide monito­ring system in Germany. J. Heal. Monit. 2017; 2 (2): 85–97.
  38. Demerath E.W., Guan W., Grove M.L. et al. Epi­genome-wide association study (EWAS) of BMI, BMI change, and waist circumference in African American adults identifies multiple replicated loci. Hum. Mol. Genet. 2015; 24: 4464–4479. doi: 10.1093/hmg/ddv161.
  39. Stols-Gonçalves D., Schiliro Tristao L., Henne­man P. et al. Epigenetic markers and microbiota/metabolite-induced epigenetic modifications in the pathogenesis of obesity, metabolic syndrome, type 2 diabetes, and non-­alcoholic fatty liver disease. Curr. Diab. Rep. 2019; 19: 1–9. doi: 10.1007/s11892-019-1151-4.
  40. Boyland E.J., Kavanagh-Safran M., Halford J.C.G. Exposure to ‘healthy’ fast food meal bundles in television promotes liking for fast food but not healthier choices in children. Br. J. Nut. 2015; 113: 1012–1018. doi: 10.1017/S0007114515000082.
  41. Cameron A.J., Spence A.C., Laws R. et al. A review of the relationship between socioeconomic position and the early-life predictors of obesity. Curr. Obes. Rep. 2015; 4 (3): 350–362. doi: 10.1007/s13679-015-0168-5.
  42. Riva A., Borgo F., Lassandro C. et al. Pediatric obesity is associated with an altered gut microbiota and discordant shifts in Firmicutes populations. Environ. Microbiol. 2017; 19: 95–105. doi: 10.1111/1462-2920.13463.
  43. Del Chierico F., Nobili V., Vernocchi P. et al. Gut microbiota profiling of pediatric nonalcoholic fatty ­liver disease and obese patients unveiled by an integrated ­meta-omics-based approach. Hepatology. 2017; 65: 451–464. doi: 10.1002/hep.28572.
  44. Hollister E.B., Riehle K., Luna R.A. et al. Structure and function of the healthy pre-adolescent pediatric gut microbiome. Microbiome. 2015; 3: 36. doi: 10.1186/s40168-015-0101-x.
  45. Del Chierico F., Abbatini F., Russo A. et al. Gut micro­biota markers in obese adolescent and adult patients: Age-dependent differential patterns. Front. Microbiol. 2018; 9: 1210. doi: 10.3389/fmicb.2018.01210.
  46. Le Chatelier E., Nielsen T., Qin J. et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013; 500: 541–546. doi: 10.1038/nature12506.
  47. Ignacio A., Fernandes M., Rodrigues V. et al. Correlation between body mass index and fecal microbiota from children. Clin. Microbiol. Infect. 2016; 22: 258. doi: 10.1016/j.cmi.2015.10.031.
  48. Murugesan S., Nirmalkar K., Hoyo-Vadillo C. et al. Gut microbiome production of short-chain fatty acids and obesity in children. Eur. J. Clin. Microbiol. Infect. Dis. 2018; 37: 621–625. doi: 10.1007/s10096-017-3143-0.
  49. Nicolucci A.C., Hume M.P., Martinez I. et al. Pre­biotics reduce body fat and alter intestinal microbiota in children who are overweight or with obesity. Gastroentero­logy. 2017; 153: 711–722. doi: 10.1053/j.gastro.2017.05.055.
  50. Barengolts E. Gut microbiota, prebiotics, probio­tics, and synbiotics in management of obesity and prediabetes: Review of randomized controlled trials. Endocr. Pract. 2016; 22: 1224–1234. doi: 10.4158/EP151157.RA.
  51. Marotz C.A., Zarrinpar A. Treating obesity and metabo­lic syndrome with fecal microbiota transplantation. Yale J. Biol. Med. 2016; 89: 383–388. PMID: 27698622.
  52. Bai J., Hu Y., Bruner D.W. Composition of gut microbiota and its association with body mass index and lifestyle factors in a cohort of 7–18 years old children from the American Gut Pro­ject. Pediatr. Obes. 2019; 14 (4): e12480. doi: 10.1111/ijpo.12480.
  53. Rampelli S., Guenther K., Turroni S. et al. Pre-obese children’s dysbiotic gut microbiome and unhealthy diets may predict the development of obesity. Commun. Biol. 2018; 1: 222. doi: 10.1038/s42003-018-0221-5.
  54. Gerard P. Gut microbiota and obesity. Cell. Mol. Life Sci. 2016; 73: 147–162. doi: 10.1007/s00018-015-2061-5.
  55. Yanovski J.A. Pediatric obesity. An introduction. Appetite. 2015; 93: 3–12. doi: 10.1016/j.appet.2015.03.028.
  56. Chung S.T., Onuzuruike A.U., Magge S.N. Cardiometabolic risk in obese children. Ann. NY Acad. Sci. 2018; 1411 (1): 166–183. doi: 10.1111/nyas.13602.
  57. Muscogiuri G., Cantone E., Cassarano S. et al. Gut microbiota: a new path to treat obesity. Int. J. Obes. Suppl. 2019; 9 (1): 10–19. doi: 10.1038/s41367-019-0011-7.
  58. Farpour-Lambert N.J., Baker J.L., Hassapidou M. et al. Childhood obesity is a chronic disease demanding specific health care — a position statement from the Childhood Obesity Task Force (COTF) of the European Association for the Study of Obesity (EASO). Obes. Facts. 2015; 8 (5): 342–349. doi: 10.1159/000441483.

© 2020 Bocharova O.V., Teplyakova E.D.

Creative Commons License

This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies