Effect of L-arginine and carnitine on cathepsin L and H activity and lysosomal membranes permeability in myocardium in expressed hyperhomocysteinemia

Cover Page

Cite item

Full Text

Abstract

Aim. To study the activity of lysosomal cysteine proteases (cathepsins L, H) and acid phosphatase, changing of permeability, stability of myocardial lysosomal membranes in rats in experimental expressed hyperhomocysteinemia model, and while administering L-arginine and carnitine. Methods. The study was performed on male Wistar rats kept on standard vivarium conditions divided into three control and three experimental groups of 8 animals each. Experimental samples were administered methionine, or combination of L-arginine and carnitine with methionine. The level of serum homocysteine was measured by ELISA. Cathepsin L and H activity was detected by spectrofluorimetric method. Acid phosphatase activity was recorded using the «end point» method. Results. In the model of expressed hyperhomocysteinemia the increase of cathepsin H total activity due to both lysosomal and nonlysosomal fractions was found. These changes were observed along with the general increase of lysosomal membranes permeability. When correcting hyperhomocysteinemia with L-arginine and carnitine a decrease of cathepsin L and H levels was noted as well as positive effect on the myocardial lysosomal membranes stability. Conclusion. Expressed hyperhomocysteinemia is accompanied by statistically significant increase of both lysosomal and cytoplasmic fractions of the cathepsin H activity, indicating the lysosomal membranes permeabilisation phenomenon; L-carnitine and arginine correct hyperhomocysteinaemia effects, leading to cathepsin L and H reduced activity and having a stabilizing effect on the lysosomal membranes of cardiomyocytes.

About the authors

A S Il’icheva

Ryazan State Medical University named after I.P. Pavlov, Ryazan, Russia

Email: sergan52006@rambler.ru

M A Fomina

Ryazan State Medical University named after I.P. Pavlov, Ryazan, Russia

References

  1. Граник В.Г. Метаболизм L-аргинина (обзор) // Хим.-фарм. ж. - 2003. - Т. 37, №3. - С. 3-20.
  2. Копелевич В.М. Витаминоподобные соединения L-карнитин и ацетил-L-карнитин: от биохимических исследований к медицинскому применению // Украин. биохим. ж. - 2005. - Т. 77, №4. - С. 25-45.
  3. Костюченко Г.И. Гипергомоцистеинемия: клиническое значение, возрастные особенности, диагностика и коррекция // Клин. геронтол. - 2007. - Т. 13, №4. - С. 32-40.
  4. Маслов А.П., Тепляков А.Т., Кузнецова А.В. Гипергомоцистеинемия и повышенный риск сердечно-сосудистых осложнений у больных ИБС с атерогенной гиперхолестеринемией // Сибир. мед. ж. (Томск). - 2009. - №4-2. - С. 25-30.
  5. Медведев Д.В., Звягина В.И., Фомина М.А. Способ моделирования тяжёлой формы гипергомоцистеинемии у крыс // Рос. мед.-биол. вестн. им. И.П. Павлова. - 2014. - №4. - С. 42-46.
  6. Панин Л.Е., Маянская Н.Н. Лизосомы: роль в адаптации и восстановлении. - Новосибирск: Наука СО, 1987. - 198 с.
  7. Паунова С.С. Апоптоз - физиология и патология // Нефрол. и диализ. - 2004. - №2. - С. 132-136.
  8. Покровский М.В., Покровская Т.Г., Кочкаров В.И., Артюшкова Е.Б. Эндотелиопротекторные эффекты L-аргинина при моделировании дефицита окиси азота // Эксперим. и клин. фармакол. - 2008. - Т. 71, №2. - С. 29-31.
  9. Пупышев А.Б. Пермеабилизация лизосомальных мембран как апоптогенный фактор // Цитология. - 2011. - Т. 53, №4. - С. 313-324.
  10. Хидирова Л.Д., Маянская М.Н., Антонов А.Р., Маянская С.Д. Гиперинсулинемия в повреждении миокарда // Международ. ж. прикладн. и фундамент. исслед. - 2009. - №4. - С. 95.
  11. Barret A.J., Kirshke H. Cathepsin B, cathepsin H, cathepsin L // Methods in Enzymol. - 1981. - Vol. 80. - P. 535-561. http://dx.doi.org/10.1016/S0076-6879(81)80043-2
  12. Felbor U., Dreier L, Bryant R.A. et al. Secreted cathepsin L generates endostatin from collagen XVIII // EMBO J. - 2000. - Vol. 19, N 6. - P. 1187-1194. http://dx.doi.org/10.1093/emboj/19.6.1187
  13. Jin M., Klionsky D.J. Regulation of autophagy: modulation of the size and number of autophagosome // FEBS Letters. - 2014. - Vol. 588. - P. 2457-2463. http://dx.doi.org/10.1016/j.febslet.2014.06.015
  14. Rajasekar P., Palanisamy N., Anuradha C.V. Increase in nitric oxide and reduction in blood pressure, protein kinase C beta II and oxidative stress by L-carnitine: a study in the fructose-fed hypertensive rat // Clin. Exp. Hypertens. - 2007. - Vol. 29, N 8. - P. 517-530. http://dx.doi.org/10.1080/10641960701743998
  15. Repnik U., Turk B. Lysosomal-mitochondrial cross-talk during cell death // 2010. - Vol. 10, N 6. - P. 662-669. http://dx.doi.org/10.1016/j.mito.2010.07.008
  16. Terman А., Kurz T., Gustafsson B., Brunket U. Lysosomal labilization // IUBMB Life. - 2006. - Vol. 58, N 9. - P. 531-539. http://dx.doi.org/10.1080/15216540600904885
  17. Yap Y.W., Whiteman M., Bay B.H. et al. Hypochlorous acid induces apoptosis of cultured cortical neurons through activation of calpains and rupture of lysosomes // J. Neurochem. - 2006. - Vol. 98. - P. 1597-1609. http://dx.doi.org/10.1111/j.1471-4159.2006.03996.x

© 2015 Il’icheva A.S., Fomina M.A.

Creative Commons License

This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies