Modern possibilities for correction of disturbances of cellular energetics in ophthalmology

Cover Page

Cite item

Full Text

Abstract

Disturbances in the mitochondrial functions that are responsible for energy metabolism of the cell, plays an important role in the development of many diseases of the eye. Among diseases of the vision organ the one with sufficient evidence of mitochondrial pathology is Leber’s release, which is associated with mutations of the mitochondrial deoxyribonucleic acid. This article provides an overview of the published literature on the research investigations of modern methods and means of correction of mitochondrial dysfunction during inflammatory and neurodegenerative diseases of the eye. Describe were the potential methods of replacement therapy and protection of mitochondria from the aggressive effects of free radicals. With the help of gene technology an increase in the number of antioxidant enzymes in the cells of the retina can be achieved. Recent authors have focused on the possibility of using mitochondria-targeted antioxidants. The possibility of controlling the main links of the apoptotic cascade and reducing the loss of retinal ganglion cells using gene therapy has been investigated in an experiment. Restoration of the balance of calcium and mitochondrial membrane potential in the phenomenon of excitotoxicity has been shown by using calcium channel blockers. We believe that gene therapy of mitochondrial dysfunction is the most promising trend for the correction of cellular energetic disturbances in ophthalmology.

About the authors

I R Gazizova

Bashkir State Medical University, Ufa, Russia

Email: ilmira_ufa@rambler.ru

References

  1. Архипова Л.Т., Архипова М.М., Бакеева Л.Е. и др. Производное пластохинона, адресованное в митохондрии, как средство, прерывающее программу старения. Связанные с возрастом заболевания глаз. SkQ возвращает зрение слепым животным // Биохимия. - 2008. - Т. 73, №12. - С. 1641-1654.
  2. Вельтищев Ю.Е., Темина П.А. Митохондриальные болезни. Наследственные болезни нервной системы. - М.: Медицина, 1998. - Т. 4. - 409 с.
  3. Газизова И.Р. Митохондриальная патология и глаукома // Глаукома. - 2011. - №4. - С. 58-65.
  4. Поздняков О.М., Бабакова Л.Л., Гехт Б.М. Митохондриальные цитопатии // Журн. неврол. и психиатр. - 2007. - №2. - С. 64-69.
  5. Сухоруков В.С. Нарушения клеточного энергообмена у детей // Рос. вестн. перинатол. и педиатр. - 2002. - Т. 47, №5. - С. 44-50.
  6. Bredesen D.E., Rao R.V., Mehlen P. Cell death in the nervous system // Nature. - 2006. - Vol. 443 - Р. 796-802.
  7. Brown M.D., Trounce I.A., Jun A.S. et al. Functional analysis of lymphoblast and cybrid mitochondria containing the 3460, 11778, or 14484 Leber’s hereditary optic neuropathy mitochondrial DNA mutation // J. Biol. Chem. - 2000. - Vol. 275 - Р. 39831-39836.
  8. Browne S.E., Beal M.F. The energetics of Huntington’s disease // Neurochem. Res. - 2004. - Vol. 29. - Р. 531-546.
  9. Calandrella N., Scarsella G., Pescosolido N. et al. Degenerative and apoptotic events at retinal and optic nerve level after experimental induction of ocular hypertension // Mol. Cell. Biochem. - 2007. - Vol. 301, N 1-2. - Р. 155-163.
  10. Carelli V., Ross-Cisneros F.N., Sadun A.A. Mitochondrial dysfunction as a cause of optic neuropathies // Prog. Retin. Eye Res. - 2004. - Vol. 23, N 1. - Р. 53-89.
  11. Danesh-Meyer H.V. Neuroprotection in glaucoma: recent and future directions // Curr. Opin. in Ophthal. - 2011. - Vol. 22, N 2. - P. 78-86.
  12. Demetriades A.-M. Gene therapy for glaucoma // J. of Glaucoma. - 2011. - Vol. 22, N 2. - Р. 73-77.
  13. D’Souza G.G., Weissig V. Approaches to mitochondrial gene therapy // Curr. Gene Ther. - 2004. - Vol. 4, N 3. - Р. 317-328.
  14. Green D.R., Reed J.C. Mitochondria and apoptosis // Science. - 1998. - Vol. 281. - Р. 1309-1312.
  15. Guy J. New therapies for optic neuropathies: development in experimental models // Neuroophthalm. J. - 2000. - Vol. 11, N 6. - Р. 421-429.
  16. Guy J., Qi X., Hauswirth W.W. Adenoassociated viral-mediated catalase expression suppresses optic neuritis in experimental allergic encephalomyelitis // Proc. Natl. Acad. Sci. USA. - 1998. - Vol. 95. - Р. 13847-13852.
  17. Guy J., Qi X., Wang H. et al. Adenoviral gene therapy with catalase suppresses experimental optic neuritis // Arch. Ophthalmol. - 1999. - Vol. 117. - Р. 1533-1539.
  18. Kroemer G., Reed J.C. Mitochondrial control of cell death // Nat. Med. - 2000. - Vol. 6. - Р. 513-519.
  19. Kujoth G.C., Hiona A., Pugh T.D. et al. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging // Science. - 2005. - Vol. 309, N 5733. - Р. 481-484.
  20. Malik J.M., Shevtova Z., Bahr M., Kugler S. Long-term in vivo inhibition of CNS neurodegeneration by Bcl-XL gene transfer // Mol. Ther. - 2005. - Vol. 11. - P. 373-381.
  21. Mihara K., Omura T. Protein import into mammalian mitochondria // Methods Enzymol. - 1995. - Vol. 260. - Р. 302-310.
  22. Murphy M.P., Smith R.A. Targeting antioxidants to mitochondria by conjugation to lipophilic cations // Annu Rev. Pharmacol. Toxicol. - 2007. - Vol. 47. - Р. 629-656.
  23. Nucci C., Tartaglione R., Cerulli A. et al. Retinal damage caused by high intraocular pressure-induced transient ischemia is prevented by coenzyme Q10 in rat // Int. Rev. Neurobiol. - 2007. - Vol. 82. - Р. 397-406.
  24. Plotnikov E.Y., Chupyrkina A.A., Jankauskas S.S. et al. Mechanisms of nephroprotective effect of mitochondria-targeted antioxidants under rhabdomyolysis and ischemia/reperfusion // Biochim. Biophys. Acta. - 2011. - Vol. 1812, N 1. - Р. 77-86.
  25. Rego A.C., Oliveira C.R. Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis: implications for the pathogenesis of neurodegenerative diseases // Neurochem. Res. - 2003. - Vol. 28, N 10. - Р. 1563-1574.
  26. Ricci J.E., Gottlieb R.A., Green D.R. Caspase-mediated loss of mitochondrial function and generation of reactive oxygen species during apoptosis // J. Cell Biol. - 2003. - Vol. 160, N 1. - Р. 65-75.
  27. Riordan-Eva P., Sanders M.D., Govan G.G. The clinical features of Leber’s hereditary optic neuropathy defined by the presence of a pathogenic mitochondrial DNA mutation // Brain. - 1995. - Vol. 118. - P. 319-337.
  28. Rizzuto R., Brini M., Pizzo P. et al. Chimeric green fluorescent protein as a tool for visualizing subcellular organelles in living cells // Curr. Biol. - 1995. - Vol. 5. - Р. 635-642.
  29. Schapira A.H. Mitochondrial disorders // Biochem. Biphys. Acts. - 1999. - Vol. 1410. - P. 99-102.
  30. Sheu S.S., Nauduri D., Anders M.W. Targeting antioxidants to mitochondria: a new therapeutic direction // Biochim. Biophys. Acta. - 2006. - Vol. 1762. - Р. 256-265.
  31. Shoffner J.M., Wallace D.C. Oxidative phosphorylation diseases: disorders of two genomes // Adv. Hum. Genet. - 1990. - Vol. 19. - Р. 267-330.
  32. Srivastava S., Moraes C.T. Manipulating mitochondrial DNA heteroplasmy by a mitochondrial targeted endonuclease // Human Mol. Genet. - 2001. - Vol. 10. - Р. 3093-3099.
  33. Stefanova N.A., Fursova A.Zh., Kolosova N.G. Behavioral effects induced by mitochondria-targeted antioxidant SkQ1 in Wistar and senescence-accelerated OXYS rats // J. Alzheimers Dis. - 2010. - Vol. 21, N 2. - P. 479-491.
  34. Tatton W.G., Chalmers-Redman R.M., Tatton N.A. Apoptosis and anti-apoptosis signalling in glaucomatous retinopathy // Eur. J. Ophthalmol. - 2001. - Vol. 11, N 12. - P. 12-22.
  35. Volbracht C., van Beek J., Zhu C. et al. Neuroprotective properties of memantine in different in vitro and in vivo models of excitotoxicity // Eur. J. Neurosci. - 2006. - Vol. 23, N 10. - Р. 2611-2622.

© 2012 Gazizova I.R.

Creative Commons License

This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies