DNA repair system defects - role in oncogenesis and cancer therapy

Cover Page

Cite item

Full Text

Abstract

Inherited and acquired abnormalities in DNA damage repair system may lead to cancer and other diseases, as well as to act as one of the key factors determining the patient’s responsiveness to chemo- and radiotherapy. Nowadays, the principles of the personalized therapy, based on specific features of disease development and pathogenesis of a solitary organism or in a small group, are applied to treat a broad number of diseases, including cancers. This approach allows to choose the most effective cancer therapy in every single case of cancer, based on the genetic analysis and expression level of specific proteins. One of the promising approaches for increasing the effectiveness of non-surgical cancer treatments - to develop the methods to increase the cancer cells sensitivity to conducted chemotherapy, based on using the DNA repair system defects for the better anti-cancer effect. The review covers some types of DNA repair system defects occurring while chemo- and radiotherapy. Perspectives of the possible influences on DNA repair mechanisms treated as possible targets for both anti-cancer treatment and for increasing the effects of cancer chemo- and radiotherapy, are discussed in the review considering the available published data and results of own research. DNA repair system defects play an important role in cancer genesis, but as well can determine the good response of patients with such defects to chemo- and radiotherapy (inducing different types of DNA damage).

About the authors

S V Boychuk

Kazan State Medical University, Kazan, Russia

Email: boichuksergei@mail.ru

B R Ramazanov

Kazan State Medical University, Kazan, Russia

References

  1. Abraham R.T. Cell cycle checkpoint signaling through the ATM and ATR kinase // Genes Dev. - 2001. - Vol. 15. - P. 2177-2196.
  2. Adimoolam S., Sirisawad M., Chen J. et al. HDAC inhibitor PCI-24781 decreases RAD51 expression and inhibits homologous recombination // Proc. Natl. Acad. Sci. USA. - 2007. - Vol. 104, N 49. - P. 19 482-19 487.
  3. Bailly C. Topoisomerase I poisons and suppressors as anticancer drugs // Curr. Med. Chem. - 2000. - Vol. 7, N 1. - P. 39-58.
  4. Bryant H.E., Schultz N., Thomas H.D. et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase // Nature. - 2005. - Vol. 434. - P. 913-917.
  5. Buisson R., Dion-Côté A.M., Coulombe Y. et al. Cooperation of breast cancer proteins PALB2 and piccolo BRCA2 in stimulating homologous recombination // Nat. Struct. Mol. Biol. - 2010. - Vol. 17. - P. 1247-1254.
  6. Cadet J., Berger M., Douki T., Ravanat J.L. Oxidative damage to DNA: formation, measurement, and biological significance // Rev. Physiol. Biochem. Pharmacol. - 1997. - Vol. 131. - P. 1-87.
  7. Cameron E.E., Bachman K.E., Myohanen S. et al. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer // Nat. Genet. - 1999. - Vol. 21. - P. 103-107.
  8. Chrzanowska K.H., Gregorek H., Dembowska-Bagińska B. et al. Nijmegen breakage syndrome (NBS) // Orph. J. Rare Dis. - 2012. - Vol. 7. - P. 13.
  9. Cleaver J.E. Cancer in xeroderma pigmentosum and related disorders of DNA repair // Nat. Rev. Cancer. - 2005. - Vol. 5. - P. 564-573.
  10. Dai Y., Grant S. New insights into Checkpoint kinase 1 (Chk1) in the DNA damage response (DDR) signaling network: rationale for employing Chk1 inhibitors in cancer therapeutics // Clin. Cancer Res. - 2010. - Vol. 16, N 2. - P. 376-383.
  11. Eads C.A., Danenberg K.D., Kawakami K. et al. CpG island hypermethylation in human colorectal tumors is not associated with DNA methyltransferase overexpression // Cancer Res. - 1999. - Vol. 59, N 10. - P. 2302-2306.
  12. Ellis N.A., German J. Molecular genetics of Bloom’s syndrome // Hum. Mol. Gen. - 1996. - Vol. 5. - P. 1457-1463.
  13. Emery I., Battelli C., Auclair P.L. et al. Response to gefitinib and erlotinib in Non-small cell lung cancer: a retrospective study // BMC Cancer. - 2009. - Vol. 9. - P. 333.
  14. Farmer H., McCabe N., Lord C.J. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy // Nature. - 2005. - Vol. 434. - P. 917-921.
  15. Friedberg E.C., Walker G.C., Siede W., Schultz R.A. DNA repair and mutagenesis. 2nd ed. - ASM Press, Washington, DC, 2006. - 1118 р.
  16. Gabrielli B., Brooks K., Pavey S. Defective cell cycle checkpoints as targets for anti-cancer therapies // Front. Pharmacol. - 2012. - Vol. 3. - P. 9.
  17. Gryder B.E., Sodji Q.H., Oyelere A.K. Targeted cancer therapy: giving histone deacetylase inhibitors all they need to succeed // Future Med. Chem. - 2012. - Vol. 4, N 4. - P. 505-524.
  18. Hartlerode A.J., Scully R. Mechanisms of double-strand break repair in somatic mammalian cells // Biochem. J. - 2009. - Vol. 423. - P. 157-168.
  19. Hoeijmaker J.H.J. Genome maintenance mechanisms for preventing cancer // Nature. - 2001. - Vol. 411. - P. 366-374.
  20. Jackson S.P. Sensing and repairing double-strand breaks // Carcinogenesis. - 2002. - Vol. 23, N 5. - P. 687-696.
  21. Jackson S.P., Bartek J. The DNA-damage response in human biology and disease // Nature. - 2009. - Vol. 461. - P. 1071-1078.
  22. Kaelin W.G.Jr. The concept of synthetic lethality in the context of anticancer therapy // Nat. Rev. Cancer. - 2005. - Vol. 5. - P. 689-698.
  23. Khanna K.K., Jackson S.P. DNA double-strand breaks: signaling, repair and the cancer connection // Nat. Genet. - 2001. - Vol. 27. - P. 247-254.
  24. Kim H.J., Kim J.H., Chie E.K. et al. DNMT (DNA methyltransferase) inhibitors radiosensitize human cancer cells by suppressing DNA repair activity // Radiat. Oncol. - 2012. - Vol. 7. - P. 39.
  25. Kisselev A.F., van der Linden W.A., Overkleeft H.S. Proteasome inhibitors: an expanding army attacking a unique target // Chem. Biol. - 2012. - Vol. 19, N 1. - P. 99-115.
  26. Lavin M.F. Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer // Nat. Rev. Mol. Cell. Biol. - 2008. - Vol. 9, N 10. - P. 759-769.
  27. Li L., Wang H., Yang E.S. et al. Erlotinib attenuates homologous recombinationalrepair of chromosomal breaks in human breast cancer cells // Cancer Res. - 2008. - Vol. 68, N 22. - P. 9141-9146.
  28. Li Y., Yang D.Q. The ATM inhibitor KU-55933 suppresses cell proliferation and induces apoptosis by blocking Akt in cancer cells with overactivated Akt // Mol. Cancer Ther. - 2010. - Vol. 9. - P. 113-125.
  29. Liccardi G., Hartley J.A., Hochhauser D. EGFR nuclear translocation modulates DNA repair following cisplatin and ionizing radiation treatment // Cancer Res. - 2011. - Vol. 71, N 3. - P. 1103-1114.
  30. Lin R.K., Hsu H.S., Chang J.W. et al. Alteration of DNA methyltransferases contributes to 5’CpG methylation and poor prognosis in lung cancer // Lung Cancer. - 2007. - Vol. 55, N 2. - P. 205-213.
  31. Lindahl T., Barnes D.E. Repair of endogenous DNA damage // Cold Spring Harb. Symp. Quant. Biol. - 2000. - Vol. 65. - P. 127-133.
  32. Ljungman M. Targeting the DNA damage response in cancer // Chem. Rev. - 2009. - Vol. 109, N 7. - P. 2929-2950.
  33. Lord C.J., Ashworth A. The DNA damage response and cancer therapy // Nature. - 2012. - Vol. 481. - P. 287-294.
  34. Lynch H.T., Lynch P.M., Lanspa S.J. et al. Review of the Lynch syndrome: history, molecular genetics, screening, differential diagnosis, and medicolegal ramifications // Clin. Genet. - 2009. - Vol. 76, N 1. - P. 1-18.
  35. Manoharan M., Ramachandran K., Soloway M.S., Singal R. Epigenetic targets in the diagnosis and treatment of prostate cancer // Int. Braz. J. Urol. - 2007. - Vol. 33, N 1. - P. 11-18.
  36. McEllin B., Camacho C.V., Mukherjee B. et al. PTEN loss compromises homologous recombination repair in astrocytes: implications for glioblastoma therapy with temozolomide or poly(ADP-ribose) polymerase inhibitors // Cancer Res. - 2010. - Vol. 70. - P. 5457-5464.
  37. McKinnon P.J. ATM and ataxia telangiectasia // EMBO Rep. - 2004. - Vol. 5 - P. 772-776.
  38. Mohaghegh P., Hickson I.D. DNA helicase deficiencies associated with cancer predisposition and premature ageing disorders // Hum. Mol. Gen. - 2001. - Vol. 10. - P. 741-746.
  39. Murakawa Y., Sonoda E., Barber L.J. et al. Inhibitors of the proteasome suppress homologous DNArecombination in mammalian cells // Cancer Res. - 2007. - Vol. 67, N 18. - P. 8536-8543.
  40. Nishida H., Tatewaki N., Nakajima Y. et al. Inhibition of ATR protein kinase activity by schisandrin B in DNA damage response // Nucl. Acids Res. - 2009. - Vol. 37. - P. 5678-5689.
  41. Nitiss J.L. Targeting DNA topoisomerase II in cancer chemotherapy // Nat. Rev. Cancer. - 2009. - Vol. 9, N 5. - P. 338-350.
  42. Pardo B., Gomez-Gonzalez B., Aguilera A. DNA repair in mammalian cells: DNA double-strand break repair: how to fix a broken relationship // Cell. Mol. Life Sci. - 2009. - Vol. 66. - P. 1039-1056.
  43. Polo S.E., Jackson S.P. Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications // Genes Dev. - 2011. - Vol. 25. - P. 409-433.
  44. Powell S.N., DeFrank J.S., Connell P. et al. Differential sensitivity of p53(-) and p53(+) cells to caffeine-induced radiosensitization and override of G2 delay // Cancer Res. - 1995. - Vol. 55. - P. 1643-1648.
  45. Powell S.N., Kachnic L.A. Therapeutic exploitation of tumor cell defects in homologous recombination // Anticancer Agents Med. Chem. - 2008. - Vol. 8, N 4. - P. 448-460.
  46. Saleh-Gohari N., Bryant H.E., Schultz N. et al. Spontaneous homologous recombination is induced by collapsed replication forks that are caused by endogenous DNA single-strand breaks // Mol. Cell. Biol. - 2005. - Vol. 25. - P. 7158-7169.
  47. Santi D.V., Norment A., Garrett C.E. Covalent bond formation between aDNA-cytosine methyltransferase and DNA containing 5-azacytosine // Proc. Natl. Acad. Sci. USA. - 1984. - Vol. 81. - P. 6993-6997.
  48. Sarkaria J.N., Busby E.C., Tibbetts R.S. et al. Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine // Cancer Res. - 1999. - Vol. 59. - P. 4375-4382.
  49. Silva F.C., Valentin M.D., Ferreira Fde O. et al. Mismatch repair genes in Lynch syndrome: a review // Sao Paulo Med. J. - 2009. - Vol. 127, N 1. - P. 46-51.
  50. Sinha R.P., Häder D.P. UV-induced DNA damage and repair: a review // Photochem. Photobiol. Sci. - 2002. - Vol. 1. - P. 225-236.
  51. Stracker T.H., Roig I., Knobel P.A., Marjanović M. The ATM signaling network in development and disease // Front Genet. - 2013. - Vol. 4. - P. 37.
  52. Stratton M.R., Campbell P.J., Futreal P.A. A comprehensive overview of cancer-predisposing mutations and advances in cancer genetics // Nature. - 2009. - Vol. 458. - P. 719-724.
  53. Ververis K., Hiong A., Karagiannis T.C., Licciardi P.V. Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents // Biologics. - 2013. - Vol. 7. - P. 47-60.
  54. Wang X.W., Tseng A., Ellis N.A. et al. Functional interaction of p53 and BLM DNA helicase in apoptosis // J. Biol. Chem. - 2001. - Vol. 276. - P. 3294-3295.
  55. Weemaes C.M., Hustinx T.W., Scheres J.M. et al. A new chromosomal instability disorder: the Nijmegen breakage syndrome // Acta Paediatr. Scand. - 1981. - Vol. 70. - P. 557-564.
  56. Wiltshire T.D., Lovejoy C.A., Wang T. et al. Sensitivity to poly(ADP-ribose) polymerase (PARP) inhibition identifies ubiquitin-specific peptidase 11 (USP11) as a regulator of DNA double-strand break repair // JBC. - 2010. - Vol. 285, N 19. - P. 14 565-14 571.
  57. Yélamos J., Farrés J., Llacuna L. et al. PARP-1 and PARP-2: new players in tumour development // Am. J. Cancer Res. - 2011. - Vol. 1, N 3. - P. 328-346.
  58. Zhang Y., Carr T., Dimtchev A. et al. Attenuated DNA damage repair by trichostatin A through BRCA1 suppression // Radiat. Res. - 2007. - Vol. 168, N 1. - P. 115-124.

Supplementary files

Supplementary Files
Action
1. JATS XML

© 2014 Boychuk S.V., Ramazanov B.R.

Creative Commons License

This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.





Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».