Options for the development of colorectal cancer immunotherapy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In colorectal cancer immunotherapy, the use of antibodies against the PD-1/PD-L1 checkpoints showed low efficacy and the development of a number of side effects with damage to the liver, lung, and thyroid gland. For this reason, to stimulate the antitumor immune response, it is necessary to search for other targets, which can be used as retroelements. Epigenetic activation of their expression with inhibitors of histone methyltransferases and deoxyribonucleic acids (DNA) leads to the formation of double-stranded ribonucleic acids (RNA) that stimulate the antiviral response of interferon, which causes apoptosis of tumor cells. This method of viral mimicry shows an objective response in colorectal cancer and other malignant neoplasms. However, activation of retrotransposons is an inducer of carcinogenesis and a necessary condition for clonal evolution and the development of chemoresistance. Therefore, the most rational combination of the method of viral mimicry is with selective inhibition of retroelements involved in the pathogenesis of colorectal cancer. For this purpose, specific miRNAs, that recruit DNA methyltransferases to the loci of the location of retroelements due to the complementarity of nucleotide sequences, which is due to their evolutionary relationship, can be used. An analysis of the scientific literature revealed 28 miRNAs derived from transposons and associated with colorectal cancer, some of which exhibit oncosuppressive activity, while others exhibit oncogenic activity. These miRNAs can be used as guides for epigenetic effects on retroelements involved in colorectal cancer carcinogenesis.

About the authors

Rustam N. Mustafin

Bashkir State Medical University

Author for correspondence.
Email: ruji79@mail.ru
ORCID iD: 0000-0002-4091-382X
SPIN-code: 4810-2534
Scopus Author ID: 56603137500
ResearcherId: S-2194-2018

Cand. Sci. (Biol.), Assoc. Prof., Depart. of Medical Genetics and Fundamental Medicine

Russian Federation, Ufa, Russia

References

  1. Zlokachestvennye novoobrazovaniya v Rossii v 2020 godu. (Malignant neoplasms in Russia in 2020.) AD Kaprin, VV Starinskiy, AO Shakhzadov, editors. Moscow: MNIOI im PA Gertsena — filial FGBU “NMITs radiologii” Minzdrava Rossii; 2021. 252 p. (In Russ.)
  2. Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature. 2017;541(7637):321–330. doi: 10.1038/nature21349.
  3. Zhang X, Ran Y, Wang K, Zhu Y, Li J. Incidence and risk of hepatic toxicities with PD-1 inhibitors in cancer patients: A meta-analysis. Drug Des Devel Ther. 2016;10:3153–3161. doi: 10.2147/DDDT.S115493.
  4. Xu D, Liu H, Xiang M, Feng A, Tian M, Li D, Mao Y, Zhang L, Zhang S, Tian Y. The relationship between pneumonitis and programmed cell death-1/programmed cell death ligand 1 inhibitors among cancer patients: A systematic review and meta-analysis. Medicine (Baltimore). 2020;99(41):e22567. doi: 10.1097/MD.0000000000022567.
  5. Tian Y, Li R, Liu Y, Li M, Song Y, Zheng Y, Gao A, Went Q, Su G, Sun Y. The risk of immune-related thyroid dysfunction induced by PD-1/PD-L1 inhibitors in cancer patients: An updated systematic review and meta-analysis. Front Oncol. 2021;11:667650. doi: 10.3389/fonc.2021.667650.
  6. Liu Y, Zhang X, Wang G, Cui X. Triple combination therapy with PD-1/PD-L1, BRAF, and MEK inhibitor for stage III–IV melanoma: A systematic review and meta-analysis. Front Oncol. 2021;11:693655. doi: 10.3389/fonc.2021.693655.
  7. Ganesh K, Stadler ZK, Cercek A, Mendelsohn RB, Shia J, Segal NH, Diaz Jr LA. Immunotherapy in colorectal cancer: rationale, challenges and potential. Nat Rev Gastroenterol Hepatol. 2019;16:361–375. doi: 10.1038/s41575-019-0126-x.
  8. Payandeh Z, Khalili S, Somi MH, Mard-Soltani M, Baghbanzadeh A, Hajiasgharzadeh K, Samad N, Baradaran B. PD-1/PD-L1-dependent immune response in colorectal cancer. J Cell Physiol. 2020;235(7–8):5461–5475. doi: 10.1002/jcp.29494.
  9. Mustafin RN. Influence of retroelements on oncogenes and tumor suppressors in carcinogenesis: A review. Journal of Modern Oncology. 2021;23(4):666–673. (In Russ.) doi: 10.26442/18151434.2021.4.201199.
  10. De Koning AP, Gu W, Castoe TA, Batzer MA, Pollock DD. Repetitive elements may comprise over two-thirds of the human genome. PLOS Genetics. 2011;7(12):e1002384. doi: 10.1371/journal.pgen.1002384.
  11. Rodriguez-Martin B, Alvarez EG, Baez-Ortega A, Zamora J, Supek F, Demeulemeester J, Santamarina M, Ju YS, Temes J, Garcia-Souto D, Detering H, Li Y, Rodriguez-Castro J, Dueso-Barroso A, Bruzos AL, Dentro SC, Blanco MG, Contino G, Ardeljan D, Tojo M, Roberts ND, Zumalave S, Edwards PAW, Weischenfeldt J, Puiggros M, Chong Z, Chen K, Lee EA, Wala JA, Raine K, Butler A, Waszak SM, Navarro FCP, Schumacher SE, Monlong J, Maura F, Bolli N, Bourque G, Gerstein M, Park PJ, Wedge DC, Berokhim R, Torrents D, Korbel JO, Martincorena I, Fitzgerald RC, Loo PV, Kazazian HH, Burns KH; PCAWG SVW Group; Campbell PJ, Tubio JMC; PCAWG Consortium. Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition. Nat Genet. 2020;52:306–319. doi: 10.1038/s41588-019-0562-0.
  12. Topham JT, Titmuss E, Pleasance ED, Williamson LM, Karasinska JM, Culibrk L, Lee MKC, Mendis S, Denroche RE, Jang GH, Kalloger SE, Wong HL, Moore RA, Mungall AJ, O’Kane GM, Knox JJ, Gallinger S, Loree JM, Mager DL, Laskin J, Marra MA, Jones SJM, Schaeffer DF, Renouf DJ. Endogenous retrovirus transcript levels are associated with immunogenic signatures in multiple metastatic cancer types. Mol Cancer Ther. 2020;19(9):1889–1897. doi: 10.1158/1535-7163.MCT-20-0094.
  13. Rajurkar M, Parikh AR, Solovyov A, You E, Kulkarni AS, Chu C, Xu KH, Jaicks C, Taylor MS, Wu C, Aryee MJ, Hong TS, Berger SL, Walt DR, Burns KH, Park PJ, Greenbaum BD, Ting DT. Reverse transcriptase inhibition disrupts repeat element life cycle in colorectal cancer. Cancer Discov. 2022;12(6):1462–1481. doi: 10.1158/2159-8290.CD-21-1117.
  14. Solyom S, Ewing AD, Rahrmann EP, Doucet T, Nelson HH, Burns MB, Harris RS, Sigmon DF, Casella A, Erlanger B, Wheelan S, Upton KR, Shukla R, Faulkner GJ, Largaespada DA, Kazazian Jr HH. Extensive somatic L1 retrotransposition in colorectal tumors. Genome Res. 2012;22(12):2328–2338. doi: 10.1101/gr.145235.112.
  15. Pradhan B, Cajuso T, Katainen R, Sulo P, Tanskanen T, Kilpivaara O, Pitkanen E, Aaltonen LA, Kauppi L, Palin K. Detection of subclonal L1 transductions in colorectal cancer by long-distance inverse-PCR and Nanopore sequencing. Sci Rep. 2017;7(1):14521. doi: 10.1038/s41598-017-15076-3.
  16. Diaz-Carballo D, Acikelli AH, Klein J, Jastrow H, Dammann P, Wyganowski T, Guemues C, Gustmann S, Bardenheuer W, Malak S, Tefett NS, Khosrawipour V, Giger-Pabst U, Tannapfel A, Strumberg D. Therapeutic potential of antiviral drugs targeting chemorefractory colorectal adenocarcinoma cells overexpressing endogenous retroviral elements. J Exp Clin Cancer Res. 2015;34(1):81. doi: 10.1186/s13046-015-0199-5.
  17. Jang HS, Shah NM, Du AY, Dailey ZZ, Pehrsson EC, Godoy PM, Zhang D, Li D, Xing X, Kim S, O’Donnell D, Gordon JI, Wang T. Transposable elements drive widespread expression of oncogenes in human cancer. Nat Genet. 2019;51:611–617. doi: 10.1038/s41588-019-0373-3.
  18. Ye D, Jiang D, Li Y, Jin M, Chen K. The role of LINE-1 methylation in predicting survival among colorectal cancer patients: A meta-analysis. Int J Clin Oncol. 2017;22(4):749–757. doi: 10.1007/s10147-017-1106-1.
  19. Cajuso T, Sulo P, Tanskenen T, Katainen R, Taira A, Hanninen UA, Kondelin J, Forsstrom L, Valimaki N, Aavikko M, Kaasinen E, Ristimaki A, Koskensalo S, Lepisto A, Renkonen-Sinisalo L, Seppala T, Kuopio T, Bohm J, Mecklin J, Kilpivaara O, Pitkanen E, Palin K, Aaltonen LA. Retrotransposon insertions can initiate colorectal cancer and are associated with poor survival. Nat Commun. 2019;10(1):4022. doi: 10.1038/s41467-019-11770-0.
  20. Scott EC, Gardner EJ, Masood A, Chuang NT, Vertino PM, Devine SE. A hot L1 retrotransposon evades somatic repression and initiates human colorectal cancer. Genome Res. 2016;26(6):745–755. doi: 10.1101/gr.201814.115.
  21. Solassol J, Larrieux M, Leclerc J, Ducros V, Corsini C, Chiesa J, Pujol P, Rey J. Alu element insertion in the MLH1 exon 6 coding sequence as a mutation predisposing to Lynch syndrome. Hum Mutat. 2019;40(6):716–720. doi: 10.1002/humu.23725.
  22. Gibb EA, Warren RL, Wilson GW, Brown SD, Robertson GA, Morin GB, Holt RA. Activation of an endogenous retrovirus-associated long non-coding RNA in human adenocarcinoma. Genome Med. 2015;7(1):22. doi: 10.1186/s13073-015-0142-6.
  23. Bao H, Bai T, Takata K, Yokobori T, Ohnaga T, Hisada T, Maeno T, Bao P, Yoshida T, Kumakura Y, Honjo H, Sakai M, Sohda M, Fukuchi M, Altan B, Handa T, Ide M, Miyazaki T, Ogata K, Oyama T, Shimizu K, Mogi A, Asao T, Shirabe K, Kuwano H, Kaira K. High expression of carcinoembryonic antigen and telomerase reverse transcriptase in circulating tumor cells is associated with poor clinical response to the immune checkpoint inhibitor nivolumab. Oncol Lett. 2018;15(3):3061–3067. doi: 10.3892/ol.2017.7671.
  24. Sciamanna I, Sinibaldi-Vallebona P, Serafino A, Spadafora C. LINE-1-encoded reverse transcriptase as a target in cancer therapy. Front Biosci (Landmark Ed). 2018;23(7):1360–1369. doi: 10.2741/4648.
  25. Sekeroglu ZA, Sekeroglu V, Kucuk N. Effects of reverse transcriptase inhibitors on proliferation, apoptosis, and migration in breast carcinoma cells. Int J Toxicol. 2021;40(1):52–61. doi: 10.1177/1091581820961498.
  26. Choi WM, Choi J, Lim YS. Effects of Tenofovir vs Entecavir on risk of hepatocellular carcinoma in patients with chronic HBV infection: A systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2021;19(2):246–258.e9. doi: 10.1016/j.cgh.2020.05.008.
  27. Hecht M, Erber S, Harrer T, Klinker H, Roth T, Parsch H, Fiebig N, Fietkau R, Distel LV. Efavirenz has the highest anti-proliferative effect of non-nucleoside reverse transcriptase inhibitors against pancreatic cancer cells. PLoS One. 2015;10(6):e0130277. doi: 10.1371/journal.pone.0130277.
  28. Ly TTG, Yun J, Ha J, Kim Y, Jang W, Van Le TH, Rethineswaran VK, Choi J, Kim J, Min S, Lee D, Yang J, Chung J, Kwon S. Inhibitory effect of Etravirine, a non-nucleoside reverse transcriptase inhibitor, via anterior gradient protein 2 homolog degradation against ovarian cancer metastasis. Int J Mol Sci. 2022;23(2):944. doi: 10.3390/ijms23020944.
  29. Macfarla TS, Gifford WD, Agarwal S, Driscoll S, Lettieri K, Wang J, Andrews SE, Franco L, Rosenfeld MG, Ren B, Pfaff SL. Endogenous retroviruses and neighboring genes are coordinately repressed by LSD1/KDM1A. Genes Dev. 2011;25:594–607. doi: 10.1101/gad.2008511.
  30. Harmeyer KM, Facompre ND, Herlyn M, Basu D. JARID1 histone demethylases: Emerging targets in cancer. Trends Cancer. 2017;3:713–725. doi: 10.1016/j.trecan.2017.08.004.
  31. Lazaro-Camp VJ, Salari K, Meng X, Yang S. SETDB1 in cancer: overexpression and its therapeutic implications. Am J Cancer Res. 2021;11(5):1803–1827. PMID: 34094655.
  32. Chen R, Ishak CA, De Carvalho DD. Endogenous retroelements and the viral mimicry response in cancer therapy and cellular homeostasis. Cancer Discov. 2021;11(11):2707–2725. doi: 10.1158/2159-8290.
  33. Chiappinell KB, Strissel PL, Desrichard A, Li H, Henke C, Akman B, Hein A, Rote NS, Cope LM, Snyder A, Makarov V, Budhu S, Slamon DJ, Wolchok JD, Pardoll DM, Beckmann MW, Zahnow CA, Merghoub T, Chan TA, Baylin SB, Strick R. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell. 2015;162:974–86. doi: 10.1016/j.cell.2017.03.036.
  34. Attermann AS, Bjerregaard AM, Saini SK, Gronbaek K, Hadrup SR. Human endogenous retroviruses and their implication for immunotherapeutics of cancer. Ann Oncol. 2018;29:2183–2191.
  35. Bermejo AV, Ragonnaud E, Daradoumis J, Holst P. Cancer associated endogenous retroviruses: Ideal immune target for adenovirus-based immunotherapy. Int J Mol Sci. 2020;21:4843. doi: 10.3390/ijms21144843.
  36. Von Hoff DD, Schilsky R, Reichert CM, Reddick RL, Rozencweig M, Young RC, Muggia FM. Toxic effects of cis-dichlorodiammineplatinum (II) in man. Cancer Treat Rep. 1979;63(9–10):1527–1531. PMID: 387223.
  37. Roulois D, Loo Yau H, Singhania R, Wang Y, Danesh A, Shen SY, Han H, Liang G, Jones PA, Pugh TJ, O’Brien C, De Carvalho DD. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell. 2015;162:961–973. doi: 10.1016/j.cell.2015.07.056.
  38. Chiappinelli KB, Strissel PL, Desrichard A, Li H, Henke C, Akman B, Hein A, Rote NS, Cope LM, Snyder A, Makarov V, Budhu S, Slamon DJ, Wolchok JD, Pardoll DM, Beckmann MW, Zahnow CA, Merghoub T, Chan TA, Baylin SB, Strick R. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell. 2015;162(5):974–986. doi: 10.1016/j.cell.2015.07.011.
  39. Kantarjian HM, Roboz GJ, Kropf PL, Yee KWL, O’Connell CL, Tibes R, Walsh KJ, Podoltsev NA, Griffiths EA, Jabbour E, Garcia-Manero G, Rizzieri D, Stock W, Savona MR, Rosenblat TL, Berdeja JG, Ravandi F, Rock EP, Hao Y, Azab M, Issa JJ. Guadecitabine (SGI-110) in treatment-naive patients with acute myeloid leukaemia: Phase 2 results from a multicentre, randomised, phase /2 trial. Lancet Oncol. 2017;18(10):1317–1326. doi: 10.1016/S1470-2045(17)30576-4.
  40. Hoy SM. Tazemetostat: first approval. Drugs. 2020;80:513–521. doi: 10.1007/s40265-020-01288-x.
  41. Deblois G, Tonekaboni SM, Grillo G, Martinez C, Kao YI, Tai F, Ettayebi I, Fortier A, Savage P, Fedor AN, Liu X, Guilhamon P, Lima-Fernandes E, Murison A, Kuasne H, Ba-Alawi W, Cescon DW, Arrowsmith CH, De Carvalho DD, Haibe-Kains B, Locasale JW, Park M, Lupien M. Epigenetic switch-induced viral mimicry evasion in chemotherapy-resistant breast cancer. Cancer Discov. 2020;10:1312–1329. doi: 10.1158/2159-8290.CD-19-1493.
  42. Morel KL, Sheahan AV, Burkhart DL, Baca SC, Boufaied N, Liu Y, Qiu X, Canadas I, Roehle K, Heckler M, Calagua C, Ye H, Pantelidou C, Galbo P, Panja S, Balk SP, Loda M, Labbe DP, Olson BM, Ellis L. EZH2 inhibition activates a dsRNA-STING-interferon stress axis that potentiates response to PD-1 checkpoint blockade in prostate cancer. Nat Cancer. 2021;2(4):444–456. doi: 10.1038/s43018-021-00185-w.
  43. Liu M, Thomas SL, DeWitt AK, Zhou W, Madaj ZB, Ohtani H, Baylin SB, Liang G, Jones PA. Dual inhibition of DNA and histone methyltransferases increases viral mimicry in ovarian cancer cells. Cancer Res. 2018;78:5754–5766. doi: 10.1158/0008-5472.CAN-17-3953.
  44. Shen JZ, Qiu Z, Wu Q, Finlay D, Garcia G, Sun D, Rantala J, Barshop W, Hope JL, Gimple RC, Sangfelt O, Bradley LM, Wohlschlegel J, Rich JN, Spruck C. FBXO44 promotes DNA replication-coupled repetitive element silencing in cancer cells. Cell. 2021;184:352–369. doi: 10.1016/j.cell.2020.11.042.
  45. Ferrari L, Cafora M, Rota F. Extracellular vesicles released by colorectal cancer cell lines modulate innate immune response in Zebrafish model: The possible role of human endogenous retroviruses. Int J Mol Sci. 2019;20(15):3669. doi: 10.3390/ijms20153669.
  46. Bhol CS, Mishra SR, Patil S, Sahu SK, Kirtana R, Manna S, Shanmugam MK, Sethi G, Patra SK, Bhutia SK. PAX9 reactivation by inhibiting DNA methyltransferase triggers antitumor effect in oral squamous cell carcinoma. Biochim Biophys Acta Mol Basis Dis. 2022;1868(9):166428. doi: 10.1016/j.bbadis.2022.166428.
  47. Koutsimpelas D, Pongsapich W, Heinrich U, Mann S, Mann WJ, Brieger J. Promoter methylation of MGMT, MLH1 and RASSF1A tumor suppressor genes in head and neck squamous cell carcinoma: Pharmacological genome demethylation reduces proliferation of head and neck squamous carcinoma cells. Oncol Rep. 2012;27(4):1135–1141. doi: 10.3892/or.2012.1624.
  48. Wong NW, Chen Y, Chen S, Wang X. OncomiR: And online resource for exploring pan-cancer microRNA dysregulation. Bioinformatics. 2018;34:713–715. doi: 10.1093/bioinformatics/btx627.
  49. Quemener AM, Bachelot L, Forestier A, Donnou-Fournet E, Gilot D, Galibert M. The powerful world of antisense oligonucleotides: From bench to bedside. Wiley Interdiscip Rev RNA. 2020;11(5):e1594. doi: 10.1002/wrna.1594.
  50. Piriyapongsa J, Marino-Ramirez L, Jordan IK. Origin and evolution of human microRNAs from transposable elements. Genetics. 2007;176:1323–1337.
  51. Filshtein TJ, Mackenzie CO, Dale MD, Dela-Cruz PS, Ernst DM, Frankenberger EA, He C, Heath KL, Jones AS, Jones DK, King ER, Maher MB, Mitchell TJ, Morgan RR, Sirobhushanam S, Halkyard SD, Tiwari KB, Rubin DA, Borchert GM, Larson ED. Orbid: Origin-based identification of microRNA targets. Mobile Genetic Elements. 2012;2:184–192. doi: 10.4161/mge.21617.
  52. Tempel S, Pollet N, Tahi F. NcRNAclassifier: a tool for detection and classification of transposable element sequences in RNA hairpins. BMC Bioinformatics. 2012;13: 246–258. doi: 10.1186/1471-2105-13-246.
  53. Qin S, Jin P, Zhou X, Chen L, Ma F. The role of transposable elements in the origin and evolution of microRNAs in human. PLoS One. 2015;10:e0131365. doi: 10.1371/journal.pone.0131365.
  54. Wei G, Qin S, Li W, Chen L, Ma F. MDTE DB: a database for microRNAs derived from Transposable element. IEEE/ACM Trans Comput Biol Bioinform. 2016;13:1155–1160. doi: 10.1109/TCBB.2015.2511767.
  55. Lee HE, Huh JW, Kim HS. Bioinformatics analysis of evolution and human disease related transposable element-derived microRNAs. Life (Basel). 2020;10:95. doi: 10.3390/life10060095.
  56. Watcharanurak P, Mutirangura A. Human RNA-directed DNA-methylation methylates high-mobility group box 1 protein-produced DNA gaps. Epigenomics. 2022;14(12):741–756. doi: 10.2217/epi-2022-0022.
  57. Johnson R, Guigo R. The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs. RNA. 2014;20:959–976. doi: 10.1261/rna.044560.114.
  58. Jin X, Xu XE, Jiang YZ, Liu YR, Sun W, Guo Y, Ren Y, Zuo W, Hu X, Huang S, Shen H, Lan F, He Y, Hu G, Di G, He X, Li D, Liu S, Yu K, Shao Z. The endogenous retrovirus-derived long noncoding RNA TROJAN promotes triple-negative breast cancer progression via ZMYND8 degradation. Sci Adv. 2019;5(3):eaat9820. doi: 10.1126/sciadv.aat9820.
  59. Kulski JK. Long noncoding RNA HCP5, a hybrid HLA class I endogenous retroviral gene: Structure, expression, and disease associations. Cells. 2019;8(5):480. doi: 10.3390/cells8050480.
  60. Deng B, Xu W, Wang Z, Liu C, Lin P, Li B, Huang Q, Yang J, Zhou H, Qu L. An LTR retrotransposon-derived lncRNA interacts with RNF169 to promote homologous recombination. EMBO Rep. 2019;20(11):e47650. doi: 10.15252/embr.201847650.
  61. Wu Y, Zhao Y, Huan L, Zhao J, Zhou Y, Xu L, Hu Z, Liu Y, Chen Z, Wang L, Huang S, He X, Liang L. An LTR retrotransposon-derived long noncoding RNA lncMER52A promotes hepatocellular carcinoma progression by binding p120-catenin. Cancer Res. 2020;80(5):976–987. doi: 10.1158/0008-5472.CAN-19-2115.
  62. Grammatikakis I, Panda AC, Abdelmohsen K, Gorospe M. Long noncoding RNAs (lncRNAs) and the molecular hallmarks of aging. Aging (Albany NY). 2014;6:992–1009. doi: 10.18632/aging.100710.

© 2023 Eco-Vector





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies