Model of small-focal ischemic cerebral infarction as a basis for the development of new methods of stroke therapy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Background. Among the existing experimental models of cerebral stroke in large animals, there is no possibility to create a focal brain infarction of limited volume, which would provide an opportunity to evaluate both the endogenous potential of neuroregeneration and to establish the effectiveness of new drugs on postischemic brain remodeling.

Aim. Development of a method for modeling small-focal ischemic infarction of the cerebral cortex in a mini-pig.

Material and methods. The study used mature female mini-pigs of the Vietnamese fold-bellied breed. Two-level occlusion of the great vessels was performed by ligation of the right common carotid artery and subsequent cauterization of the distal branches of the middle cerebral artery. In the postoperative period, the survival rate of animals and neurological deficit were assessed. On the 7th day, the animals were taken out of the experiment, the brain was isolated from the cranial box. Macroscopic and microscopic examinations included analysis of the localization and area of cerebral infarction, as well as morphological changes in the infarcted and peri-infarcted areas of the cerebral cortex.

Results. With a 100% survival rate of experimental animals on the 3rd day after the operation, a neurological examination revealed violations of skin sensitivity and muscle tone in the hind and fore limbs, which partially recovered a week after the onset of ischemic stroke. Macroscopic examination of the brain on the 7th day after the operation visually revealed a small-focal ischemic cerebral infarction in the parietal lobe of the left hemisphere. Histological analysis of the cerebral cortex revealed a wedge-shaped necrotic focus of ischemic injury. In the peri-infarction region of the brain, reactive tissue changes with preserved nerve cells, mostly without visible damage, were found.

Conclusion. The developed two-level method of stroke modeling in a mini pig induces ischemic cerebral infarction of limited volume in the parietal lobe; non-critical histological changes in the peri-infarct area and a slight neurological deficit suggest the possibility of using this model to develop new methods of stroke therapy.

About the authors

Vage A. Markosyan

Kazan State Medical University

Email: vage.markosyan@gmail.com
ORCID iD: 0000-0002-3789-0284

Assistant, Depart. of Operative Surgery and Topographic Anatomy

Russian Federation, Kazan, Russia

Andrei A. Izmailov

Kazan State Medical University

Author for correspondence.
Email: andrei.izmaylov@kazangmu.ru
ORCID iD: 0000-0002-8128-4636
SPIN-code: 9629-8511
Scopus Author ID: 7004952364
ResearcherId: R-1143-2017

Cand. Sci. (Med.), Assistant, Depart. of Histology, Cytology and Embryology

Russian Federation, Kazan, Russia

Mikhail E. Sokolov

Kazan State Medical University

Email: supermihon@yandex.ru
ORCID iD: 0000-0003-2938-6683

Cand. Sci. (Med.), Assistant, Department of Operative Surgery and Topographic Anatomy

Russian Federation, Kazan, Russia

Viktor V. Valiullin

Kazan State Medical University

Email: valiullinvv@yandex.ru
ORCID iD: 0000-0002-6030-6373

D. Sci. (Biol.), Prof., Depart. of Histology, Cytology and Embryology

Russian Federation, Kazan, Russia

Zufar Z. Safiullov

Kazan State Medical University

Email: redblackwhite@mail.ru
ORCID iD: 0000-0003-4577-3448

Cand. Sci. (Med.), Assoc. Prof., Depart. of Normal Anatomy

Russian Federation, Kazan, Russia

References

  1. Skvortsova VI, Alekseeva GS, Trifonova NYu. Analysis of medical organizational measures for prevention of strokes and rehabilitation of post-stroke conditions at the present stage. Social aspects of population health. 2013;(1):2. (In Russ.)
  2. Campbell BCV, De Silva DA, Macleod MR, Coutts SB, Schwamm LH, Davis SM, Donnan GA. Ischaemic stroke. Nat Rev Dis Prim. 2019;5(1):70. doi: 10.1038/s41572-019-0118-8.
  3. Mendelson SJ, Prabhakaran S. Diagnosis and management of transient ischemic attack and acute ischemic stroke: A review. JAMA. 2021;325(11):1088–1098. doi: 10.1001/jama.2020.26867.
  4. Barthels D, Das H. Current advances in ischemic stroke research and therapies. Biochim Biophys Acta Mol Basis Dis. 2020;1866(4):165260. doi: 10.1016/j.bbadis.2018.09.012.
  5. Li Y, Zhang J. Animal models of stroke. Anim Model Exp Med. 2021;4(3):204–219. doi: 10.1002/ame2.12179.
  6. Sokolov ME, Bashirov FV, Safiullov ZZ. Experimental validation of gene therapy for ischemic stroke. Kazan Medical Journal. 2017;98(5):763–769. (In Russ.) doi: 10.17750/KMJ2017-763.
  7. Melià-Sorolla M, Castaño C, Degregorio-Rocasolano N, Rodríguez-Esparragoza L, Dávalos A, Martí-Sistac O, Gasull T. Relevance of porcine stroke models to bridge the gap from pre-clinical findings to clinical implementation. Int J Mol Sci. 2020;21(18):6568. doi: 10.3390/ijms21186568.
  8. Wernersson R, Schierup MH, Jørgensen FG, Gorodkin J, Panitz F, Staerfeldt HH, Christensen OF, Mailund T, Hornshøj H, Klein A, Wang J, Liu B, Hu S, Dong W, Li W, Wong GKS, Yu J, Wang J, Bendixen C, Fredholm M, Brunak S, Yang H, Bolund L. Pigs in sequence space: A 0.66X coverage pig genome survey based on shotgun sequencing. BMC Genomics. 2005;6:70. doi: 10.1186/1471-2164-6-70.
  9. Dalgaard L. Comparison of minipig, dog, monkey and human drug metabolism and disposition. J Pharmacol Toxicol Methods. 2015;74:80–92. doi: 10.1016/j.vascn.2014.12.005.
  10. Sakoh M, Røhl L, Gyldensted C, Gjedde A, Ostergaard L. Cerebral blood flow and blood volume measured by magnetic resonance imaging bolus tracking after acute stroke in pigs: Comparison with [(15)O]H(2)O positron emission tomography. Stroke. 2000;31(8):1958–1964. doi: 10.1161/01.str.31.8.1958.
  11. Imai H, Konno K, Nakamura M, Shimizu T, Kubota C, Seki K, Honda F, Tomizawa S, Tanaka Y, Hata H, Saito N. A new model of focal cerebral ischemia in the miniature pig. J Neurosurg. 2006;104(2):123–132. doi: 10.3171/ped.2006.104.2.123.
  12. Sommer CJ. Ischemic stroke: Experimental models and reality. Acta Neuropathol. 2017;133(2):245–261. doi: 10.1007/s00401-017-1667-0.
  13. Graham SM, McCullough LD, Murphy SJ. Animal models of ischemic stroke: Balancing experimental aims and animal care. Comp Med. 2004;54(5):486–496. PMID: 15575362.
  14. Larson ST, Wilbur J. Muscle weakness in adults: Evaluation and differential diagnosis. Am Fam Physician. 2020;101(2):95–108. PMID: 31939642.
  15. Paul S, Candelario-Jalil E. Emerging neuroprotective strategies for the treatment of ischemic stroke: An overview of clinical and preclinical studies. Exp Neurol. 2021;335:113518. doi: 10.1016/j.expneurol.2020.113518.
  16. Sokolov ME, Bashirov FV, Markosyan VA, Povysheva TV, Fadeev FO, Izmailov AA, Kuztetsov MS, Safiullov ZZ, Shmarov MM, Naroditskyi BS, Palotás A, Islamov RR. Triple-gene therapy for stroke: A proof-of-concept in vivo study in rats. Front Pharmacol. 2018;9:111. doi: 10.3389/fphar.2018.00111.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Рис. 1. Головной мозг мини-свиньи через 7 сут после моделирования инсульта. А. Левое полушарие мозга. Область инфаркта ограничена пунктирной линией. Б. Гистологический срез коры головного мозга через фокус ишемического повреждения (окраска гематоксилином и эозином). В. Гистологический срез коры головного мозга через периинфарктную область (окраска гематоксилином и эозином)

Download (92KB)

© 2023 Eco-Vector





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies