Possibilities of computed and magnetic resonance imaging of the heart in patients with ­atrial fibrillation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Computed and magnetic resonance imaging of the heart has been widely used in recent years in patients with atrial fibrillation. They are used to determine the morphology of the heart, the presence of intracardiac thrombi, quantify the structures of the heart, thrombosis of intracardiac devices, determine tactics for surgical interventions, and other purposes. These methods of instrumental diagnostics can be used as an alternative to transesophageal echocardiography, which has a number of limitations and disadvantages compared to computed tomography and magnetic resonance imaging. Computed and magnetic resonance imaging of the heart are used to avoid invasiveness in the study of the heart, to improve the accuracy of measuring heart structures, to reduce the number of diagnostic methods used before various surgical interventions in patients with atrial fibrillation, and also, according to epidemic indications, as part of the prevention of the spread of coronavirus infection. In addition, magnetic resonance imaging allows to avoid radiation exposure to the patient. The review presents the results of studies, meta-analyses of pooled samples, as well as a description of the clinical possibilities of computed and magnetic resonance imaging of the heart in patients with atrial fibrillation. Publications on the use of these methods for visualization of thrombi in the left atrium and its appendage, in pulmonary vein ablation and occlusion of the left atrial appendage, as well as data on visualization of the residual flow around the occlusive device and thrombosis of intracardiac devices are presented. According to the results of a literature review, computed tomography and magnetic resonance imaging of the heart have similar or higher imaging capabilities compared to transesophageal echocardiography, as well as some advantages over it, primarily the non-invasiveness of the procedure. The works demonstrating the possibilities of computed tomography of the heart for the diagnosis of coronary heart disease in patients with atrial fibrillation are presented. In preparing the review, the literature search method in PubMed databases for the period 2013–2022 was used.

About the authors

Genshat S. Galyautdinov

Kazan State Medical University

Author for correspondence.
Email: galgen077@mail.ru
ORCID iD: 0000-0001-7403-0200

M.D., D. Sci. (Med.), Prof., Depart. of Hospital Therapy, Deputy Dean of the Faculty of Medicine

Russian Federation, Kazan, Russia

Karina R. Ibragimova

Interdistrict multidisciplinary hospital of Almetyevsk

Email: skmalina@mail.ru
ORCID iD: 0000-0001-5300-0635

Clinical pharmacologist

Russian Federation, Almetyevsk, Russia

Shamilya Sh. Galeeva

Kazan State Medical University

Email: g.s.0101@yandex.ru
ORCID iD: 0000-0001-8654-1112

Resident, Depart. of Hospital Therapy

Russian Federation, Kazan, Russia

References

  1. Hindricks G, Potpara T, Dagres N, Arbelo E, Bax JJ, Blomström-Lundqvist C, Boriani G, Castella M, Dan GA, Dilaveris PE, Fauchier L, Filippatos G, Kalman JM, La Meir M, Lane DA, Lebeau JP, Lettino M, Lip GYH, Pinto FJ, Thomas GN, Valgimigli M, Van Gelder IC, Van Putte BP, Watkins CL; ESC Scientific Document Group. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J. 2021;42(5):373–498. doi: 10.1093/eurheartj/ehaa612.
  2. Lubitz SA, Yin X, McManus DD, Weng L-C, Aparicio HJ, Walkey AJ, Romero JR, Kase CS, Ellinor PT, Wolf PA, Seshadri S, Benjamin EJ. Stroke as the initial manifestation of atrial fibrillation: the Framingham Heart Study. Stroke. 2017;48(02):490–492. doi: 10.1161/STROKEAHA.116.015071.
  3. Safavi-Naeini P, Rasekh A. Thromboembolism in atrial fibrillation: Role of the left atrial appendage. Card Electrophysiol Clin. 2020;12(1):13–20. doi: 10.1016/j.ccep.2019.11.003.
  4. Preprint doi: 10.21203/rs.3.rs-1006558/v1.
  5. Yingchoncharoen T, Jha S, Burchill LJ, Klein AL. Transesophageal echocardiography in atrial fibrillation. Card Electrophysiol Clin. 2014;6(1):43–59. doi: 10.1016/j.ccep.2013.11.006.
  6. Kirkpatrick JN, Mitchell C, Taub C, Kort S, Hung J, Swaminathan M. ASE statement on protection of patients and echocardiography service providers during the 2019 novel coronavirus outbreak: Endorsed by the American College of Cardiology. J Am Coll Cardiol. 2020;75(24):3078–3084. doi: 10.1016/j.jacc.2020.04.002.
  7. Obeng-Gyimah E, Nazarian S. Advancements in imaging for atrial fibrillation ablation: Is there a potential to improve procedural outcomes? J Innov Card Rhythm Manag. 2020;11(7):4172–4178. doi: 10.19102/icrm.2020.110701.
  8. Romero J, Husain SA, Kelesidis I, Sanz J, Medina HM, Garcia MJ. Detection of left atrial appendage thrombus by cardiac computed tomography in patients with atrial fibrillation: A meta-analysis. Circ Cardiovasc Imaging. 2013;6(2):185–194. doi: 10.1161/CIRCIMAGING.112.000153.
  9. Spagnolo P, Giglio M, Di Marco D, Cannaò PM, Agricola E, Della Bella PE, Monti CB, Sardanelli F. Diagnosis of left atrial appendage thrombus in patients with atrial fibrillation: Delayed contrast-enhanced cardiac CT. Eur Radiol. 2021;31(3):1236–1244. doi: 10.1007/s00330-020-07172-2.
  10. Pathan F, Hecht H, Narula J, Marwick TH. Roles of transesophageal echocardiography and cardiac computed tomography for evaluation of left atrial thrombus and associated pathology: A review and critical analysis. JACC Cardiovasc Imaging 2018;11:616–627. doi: 10.1016/j.jcmg.2017.12.019.
  11. Suh YJ, Han K, Park SJ, Shim CY, Hong GR, Lee S, Lee SH, Kim YJ, Choi BW. Differentiation of left atrial appendage thrombus from circulatory stasis using cardiac CT radiomics in patients with valvular heart disease. Eur Radiol. 2021;31(2):1130–1139. doi: 10.1007/s00330-020-07173-1.
  12. Guha A, Dunleavy MP, Hayes S, Afzal MR, Daoud EG, Raman SV, Harfi TT. Accuracy of contrast-enhanced computed tomography for thrombus detection prior to atrial fibrillation ablation and role of novel Left Atrial Appendage Enhancement Index in appendage flow assessment. Int J Cardiol. 2020;318:147–152. doi: 10.1016/j.ijcard.2020.06.035.
  13. Ouchi K, Sakuma T, Higuchi T, Yoshida J, Narui R, Nojiri A, Yamane T, Ojiri H. Computed tomography findings associated with the reduction in left atrial appendage flow velocity in patients with atrial fibrillation. Heart Vessels. 2022;37(8):1436–1445. doi: 10.1007/s00380-022-02041-y.
  14. Zhai Z, Tang M, Zhang S, Fang P, Jia Y, Feng T, Wang J. Transoesophageal echocardiography prior to catheter ablation could be avoided in atrial fibrillation patients with a low risk of stroke and without filling defects in the late-phase MDCT scan: A retrospective analysis of 783 patients. Eur Radiol. 2018;28(5):1835–1843. doi: 10.1007/s00330-017-5172-6.
  15. Chen J, Zhang H, Zhu D, Wang Y, Byanju S, Liao M. Cardiac MRI for detecting left atrial/left atrial appendage thrombus in patients with atrial fibrillation: meta-analysis and systematic review. Herz. 2019;44(5):390–397. doi: 10.1007/s00059-017-4676-9.
  16. Rathi VK, Reddy ST, Anreddy S, Belden W, Yamrozik JA, Williams RB, Doyle M, Thompson DV, Biederman RW. Contrast-enhanced CMR is equally effective as TEE in the evaluation of left atrial appendage thrombus in patients with atrial fibrillation undergoing pulmonary vein isolation procedure. Heart Rhythm. 2013;10(7):1021–1027. doi: 10.1016/j.hrthm.2013.02.029.
  17. Vira T, Pechlivanoglou P, Connelly K, Wijeysundera HC, Roifman I. Cardiac computed tomography and magnetic resonance imaging vs. transoesophageal echocardiography for diagnosing left atrial appendage thrombi. Europace. 2019;21(1):e1–e10. doi: 10.1093/europace/euy142.
  18. Kitkungvan D, Nabi F, Ghosn MG, Dave AS, Quinones M, Zoghbi WA, Valderrabano M, Shah DJ. Detection of LA and LAA thrombus by CMR in patients referred for pulmonary vein isolation. JACC Cardiovasc Imaging. 2016;9(7):809–818. doi: 10.1016/j.jcmg.2015.11.029.
  19. Nakamura R, Oda A, Tachibana S, Sudo K, Shigeta T, Sagawa Y, Kurabayashi M, Goya M, Okishige K, Sasano T, Yamauchi Y. Prone-position computed tomography in the late phase for detecting intracardiac thrombi in the left atrial appendage before catheter ablation for atrial fibrillation. J Cardiovasc Electrophysiol. 2021;32(7):1803–1811. doi: 10.1111/jce.15062.
  20. Hasegawa K, Miyazaki S, Ishida T, Tada H. Computed tomography in the prone position is a simple and useful technique to detect left atrial thrombi in persistent atrial fibrillation. J Cardiovasc Electrophysiol. 2018;29(4):632–633. doi: 10.1111/jce.13411.
  21. Rajiah P, Alkhouli M, Thaden J, Foley T, Williamson E, Ranganath P. Pre- and postprocedural CT of transcatheter left atrial appendage closure devices. Radiogra-phics. 2021;41(3):680–698. doi: 10.1148/rg.2021200136.
  22. Peters A, Motiwala A, O’Neill B, Patil P. Novel use of fused cardiac computed tomography and transesophageal echocardiography for left atrial appendage closure. Catheter Cardiovasc Interv. 2021;97(5):E719–E723. doi: 10.1002/ccd.28840.
  23. So CY, Kang G, Villablanca PA, Ignatius A, Asghar S, Dhillon D, Lee JC, Khan A, Singh G, Frisoli TM, O’Neill BP, Eng MH, Song T, Pantelic M, O’Neill WW, Wang DD. Additive value of preprocedural computed tomography planning versus stand-alone transesophageal echocardiogram guidance to left atrial appendage occlusion: Comparison of real-world practice. J Am Heart Assoc. 2021;10(17):e020615. doi: 10.1161/JAHA.120.020615.
  24. Chen T, Liu G, Mu Y, Xu WH, Guo YT, Guo J, Chen YD. Application of cardiac computed tomographic imaging and fluoroscopy fusion for guiding left atrial appendage occlusion. Int J Cardiol. 2021;331:289–295. doi: 10.1016/j.ijcard.2021.01.035.
  25. Nadeem F, Igwe C, Stoycos S, Jaswaney R, Tsushima T, Al-Kindi S, Bansal E, Fares A, Dallan L, Patel S, Rajagopalan S, Arruda M, Filby S, Bezerra H. A new WATCHMAN sizing algorithm utilizing cardiac CTA. Cardiovasc Revasc Med. 2021;33:13–19. doi: 10.1016/j.carrev.2021.01.009.
  26. Prosper A, Shinbane J, Maliglig A, Saremi F, Wilcox A, Lee C. Left atrial appendage mechanical exclusion: Procedural planning using cardiovascular computed tomographic angiography. J Thorac Imaging. 2020;35(4):W107–W118. doi: 10.1097/RTI.0000000000000504.
  27. Toy D, Naeger DM. Pre and post procedure imaging of the Watchman device with cardiac computed tomography angiography. Curr Treat Options Cardiovasc Med. 2019;21(10):61. doi: 10.1007/s11936-019-0767-7.
  28. Glassy MS, Sharma G, Singh GD, Smith TWR, Fan D, Rogers JH. Usable implantation depth for watchman left atrial appendage occlusion is greater with appendage angiography than transesophageal echocardiography. Catheter Cardiovasc Interv. 2019;93(5):E311–E317. doi: 10.1002/ccd.27916.
  29. Qamar SR, Jalal S, Nicolaou S, Tsang M, Gilhofer T, Saw J. Comparison of cardiac computed tomography angiography and transoesophageal echocardiography for device surveillance after left atrial appendage closure. EuroIntervention. 2019;15(8):663–670. doi: 10.4244/EIJ-D-18-01107.
  30. Asami M; OCEAN-SHD Investigators. Computed tomography measurement for left atrial appendage closure. Cardiovasc Interv Ther. 2022;37(3):440–449. doi: 10.1007/s12928-022-00852-4.
  31. Hell MM, Achenbach S, Yoo IS, Franke J, Blachutzik F, Roether J, Graf V, Raaz-Schrauder D, Marwan M, Schlundt C. 3D printing for sizing left atrial appendage closure device: Head-to-head comparison with computed tomography and transoesophageal echocardiography. EuroIntervention. 2017;13(10):1234–1241. doi: 10.4244/EIJ-D-17-00359.
  32. Obasare E, Mainigi SK, Morris DL, Slipczuk L, Goykhman I, Friend E, Ziccardi MR, Pressman GS. CT based 3D printing is superior to transesophageal echocardiography for pre-procedure planning in left atrial appendage device closure. Int J Cardiovasc Imaging. 2018;34(5):821–831. doi: 10.1007/s10554-017-1289-6.
  33. Cong B, Wang Q, Mo B, Niu J. CT image-based surgery assist system for left atrial appendage occlusion. Zhongguo Yi Liao Qi Xie Za Zhi. 2021;45(4):355–360. (In Chinese.) doi: 10.3969/j.issn.1671-7104.2021.04.001.
  34. Chow DH, Bieliauskas G, Sawaya FJ, Millan-Iturbe O, Kofoed KF, Søndergaard L, De Backer O. A comparative study of different imaging modalities for successful percutaneous left atrial appendage closure. Open Heart. 2017;4(2):e000627. doi: 10.1136/openhrt-2017-000627.
  35. Sattar Y, Kompella R, Ahmad B, Aamir M, Suleiman AM, Zghouzi M, Ullah W, Zafrullah F, Elgendy IY, Balla S, Kawsara A, Alraies MC. Comparison of left atrial appendage parameters using computed tomography vs. transesophageal echocardiography for watchman device implantation: A systematic review & meta-analysis. Expert Rev Cardiovasc Ther. 2022;20(2):151–160. doi: 10.1080/14779072.2022.2043745.
  36. Tacher V, Sifaoui I, Kharrat R, Dacher JN, Chevance V, Gallet R, Teiger E, Kobeiter H, Le Pennec V, Jacquier A, Mandry D, Macron L, Derbel H, Deux JF. The use of cardiac computed tomography angiography in the assessment of percutaneous left atrial appendage closure — Review and experts recommendations endorsed by the Société française d’imagerie cardiaque et vasculaire diagnostique et interventionnelle. Diagn Interv Imaging. 2021;102(10):586–592. doi: 10.1016/j.diii.2021.05.010.
  37. Korsholm K, Jensen JM, Nørgaard BL, Samaras A, Saw J, Berti S, Tzikas A, Nielsen-Kudsk JE. Peridevice leak following Amplatzer left atrial appendage occlusion: Cardiac computed tomography classification and clinical outcomes. JACC Cardiovasc Interv. 2021;14(1):83–93. doi: 10.1016/j.jcin.2020.10.034.
  38. Zhao MZ, Chi RM, Yu Y, Wang QS, Sun J, Li W, Zhang PP, Liu B, Feng XF, Zhao Y, Mo BF, Chen M, Zhang R, Gong CQ, Yu YC, Li YG. Value of detecting peri-device leak and incomplete endothelialization by cardiac CT angiography in atrial fibrillation patients post Watchman LAAC combined with radiofrequency ablation. J Cardiovasc Electrophysiol. 2021;32(10):2655–2664. doi: 10.1111/jce.15222.
  39. Guglielmo M, Baggiano A, Muscogiuri G, Fusini L, Andreini D, Mushtaq S, Conte E, Annoni A, Formenti A, Mancini EM, Gripari P, Guaricci AI, Rabbat MG, Pepi M, Pontone G. Multimodality imaging of left atrium in patients with atrial fibrillation. J Cardiovasc Comput Tomogr. 2019;13(6):340–346. doi: 10.1016/j.jcct.2019.03.005.
  40. Romero J, Shivkumar K, Di Biase L, Avendano R, Anderson RD, Natale A, Kumar S. Mastering the art of epicardial access in cardiac electrophysiology. Heart Rhythm. 2019;16(11):1738–1749. doi: 10.1016/j.hrthm.2019.04.038.
  41. Korsholm K, Jensen JM, Nørgaard BL, Nielsen-Kudsk JE. Detection of device-related thrombosis following left atrial appendage occlusion: A comparison between cardiac computed tomography and transesophageal echocardiography. Circ Cardiovasc Interv. 2019;12(9):e008112. doi: 10.1161/CIRCINTERVENTIONS.119.008112.
  42. Vaishnav AS, Alderwish E, Coleman KM, Saleh M, Makker P, Bhasin K, Bernstein NE, Skipitaris NT, Mountantonakis SE. Anatomic predictors of recurrence after cryoablation for atrial fibrillation: A computed tomography based composite score. J Interv Card Electrophysiol. 2021;61(2):293–302. doi: 10.1007/s10840-020-00799-7.
  43. Di Cori A, Zucchelli G, Faggioni L, Segreti L, De Lucia R, Barletta V, Viani S, Paperini L, Parollo M, Soldati E, Caramella D, Bongiorni MG. Role of pre-procedural CT imaging on catheter ablation in patients with atrial fibrillation: procedural outcomes and radiological exposure. J Interv Card Electrophysiol. 2021;60(3):477–484. doi: 10.1007/s10840-020-00764-4.
  44. Takagi T, Derval N, Pambrun T, Nakatani Y, André C, Ramirez FD, Nakashima T, Krisai P, Kamakura T, Pineau X, Tixier R, Chauvel R, Cheniti G, Duchateau J, Sacher F, Hocini M, Haïssaguerre M, Jaïs P, Cochet H. Optimized computed tomography acquisition protocol for ethanol infusion into the vein of Marshall. JACC Clin Electrophysiol. 2022;8(2):168–178. doi: 10.1016/j.jacep.2021.09.020.
  45. Habibi M, Chrispin J, Spragg DD, Zimmerman SL, Tandri H, Nazarian S, Halperin H, Trayanova N, Calkins H. Utility of cardiac MRI in atrial fibrillation management. Card Electrophysiol Clin. 2020;12(2):131–139. doi: 10.1016/j.ccep.2020.02.006.
  46. Lee DK, Shim J, Choi JI, Kim YH, Oh YW, Hwang SH. Left atrial fibrosis assessed with cardiac MRI in patients with paroxysmal and those with persistent atrial fibrillation. Radiology. 2019;292(3):575–582. doi: 10.1148/radiol.2019182629.
  47. Kheirkhahan M, Baher A, Goldooz M, Kholmovski EG, Morris AK, Csecs I, Chelu MG, Wilson BD, Marrouche NF. Left atrial fibrosis progression detected by LGE-MRI after ablation of atrial fibrillation. Pacing Clin Electrophysiol. 2020;43(4):402–411. doi: 10.1111/pace.13866.
  48. Ghafouri K, Franke KB, Foo FS, Stiles MK. Clinical utility of cardiac magnetic resonance imaging to assess the left atrium before catheter ablation for atrial fibrillation — A systematic review and meta-analysis. Int J Cardiol. 2021;339:192–202. doi: 10.1016/j.ijcard.2021.07.030.
  49. Wang TKM, Chan N, Cremer PC, Kanj M, Baranowski B, Saliba W, Wazni OM, Jaber WA. Incorporating coronary calcification by computed tomography into CHA2DS2-VASc score: Impact on cardiovascular outcomes in patients with atrial fibrillation. Europace. 2021;23(8):1211–1218. doi: 10.1093/europace/euab032.
  50. Rottländer D, Saal M, Degen H, Gödde M, Horlitz M, Haude M. Diagnostic role of coronary CT angiography in paroxysmal or first diagnosed atrial fibrillation. Open Heart. 2021;8(1):e001638. doi: 10.1136/openhrt-2021-001638.
  51. Nous FMA, Budde RPJ, van Dijkman ED, Musters PJ, Nieman K, Galema TW. Prognostic value of subclinical coronary artery disease in atrial fibrillation patients identified by coronary computed tomography angiography. Am J Cardiol. 2020;126:16–22. doi: 10.1016/j.amjcard.2020.03.050.

© 2023 Eco-Vector





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies