A review of information resources on antimicrobial resistance genes

Cover Page

Cite item

Full Text

Abstract

Interest in the issues of antibiotic resistance control and monitoring remains actual during the past decades. A significant number of findings confirm the ever-growing ratio of antimicrobial-resistant microorganisms. The article describes the information resources including data on antimicrobial resistance genes. Efficient monitoring and timely detection of changes in this trend are possible provided that the large volume of information, including the range of the genes characterizing resistance to chemical compounds and medicines, is obtained. Using purpose-built databases describing the nucleotide and amino acid sequences that define antimicrobial resistance is particularly important. Moreover, the databases include data on point mutations in the genome of the microorganisms associated with antimicrobial resistance development. The first developed databases contained the limited information on genetic determinants of resistance. However, modern databases are more than ever tended to a full range display of information on various genes of resistance to antimicrobial medicines and chemical compounds. The approach provides meaningful data supplemented by graphic imaging of results in most cases. Access to a significant part of resources is free of charge and allows saving the final results that considerably simplifies communicating and improves interaction between researchers. A specific feature is continuous information updating and manual curation that provides better systematization of the available data.

About the authors

A G Vinogradova

Smolensk State Medical University

Author for correspondence.
Email: ali-8727@yandex.ru
Smolensk, Russia

A Yu Kuzmenkov

Smolensk State Medical University

Email: ali-8727@yandex.ru
Smolensk, Russia

References

  1. Davies J., Davies D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 2010; 74 (3): ­417–33. doi: 10.1128/MMBR.00016-10.
  2. Aslam B., Wang W., Arshad M. et al. Antibiotic resistance: A rundown of a global crisis. Infect. Drug Resist. 2018; 11: 1645–1658. doi: 10.2147/IDR.S173867.
  3. O’Neill J. Review on antimicrobial resistance. antimicrobial resistance: Tackling a crisis for the health and wealth of nations. 2014. https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20cri
  4. sis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf (access date: 18.11.2018).
  5. Fields F.R., Lee S.W., McConnell M.J. Using bacterial genomes and essential genes for the development of new antibiotics. Biochem. Pharmacol. 2017; 134: 74–86. doi: 10.1016/j.bcp.2016.12.002.
  6. Donadio S., Maffioli S., Monciardini P. et al. Antibiotic discovery in the twenty-first century: Current trends and future perspectives. J. Antibiot. (Tokyo). 2010; 63 (8): 423–430. doi: 10.1038/ja.2010.62.
  7. Martínez J.L., Coque T.M., Baquero F. What is a resistance gene? Ranking risk in resistomes. Nat. Rev. Microbiol. 2015; 13 (2): 116–123. doi: 10.1038/nrmicro3399.
  8. NAR Database Summary Paper. https://www.oxfordjournals.org/nar/database/subcat/11/35 (дата обращения: 21.11.2018).
  9. Zhulin I.B. Databases for microbiologists. J. Bacteriol. 2015; 197 (15): 2458–2467. doi: 10.1128/JB.00330-15.
  10. Warinner C., Rodrigues J.F., Vyas R. et al. Pathogens and host immunity in the ancient human oral cavity. Nat. Genet. 2014; 46 (4): 336–344. doi: 10.1038/ng.2906.
  11. Baxevanis A.D., Ouellette B.F. Bioinformatics: a practical guide to the analysis of genes and proteins. Wiley-Interscience. 2001; 470 p.
  12. Scaria J., Chandramouli U., Verma S.K. Antibiotic Resistance Genes Online (ARGO): a database on vancomycin and beta-lactam resistance genes. Bioinformation. 2005; 1 (1): 5–7. PMID: 17597841.
  13. GenBank. https://www.ncbi.nlm.nih.gov/genbank/ (дата обращения: 22.11.2018).
  14. Liu B., Pop M. ARDB — Antibiotic Resistance Genes Database. Nucleic Acids Res. 2009; 37: D443–D447. doi: 10.1093/nar/gkn656.
  15. Laheyclinic. https://www.lahey.org/Studies/ (дата обращения: 22.11.2018).
  16. Zhou C.E., Smith J., Lam M. et al. MvirDB-a microbial database of protein toxins, virulence factors and antibio­tic resistance genes for bio-defense applications. Nucleic ­Acids Res. 2007; 35: D391–D394. DOI: 10.1093/
  17. nar/gkl791.
  18. GalileoTM. https://www.arcbio.com/amr/ (дата обращения: 22.11.2018).
  19. Galileo-amr-example. https://www.arcbio.com/wp-content/uploads/2018/03/galileo-amr-example.pdf (дата обращения: 23.11.2018).
  20. Gibson M.K., Forsberg K.J., Dantas G. Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology. ISME J. 2015; 9 (1): 207–2016. doi: 10.1038/ismej.2014.106.
  21. ARDB — Antibiotic Resistance Genes Database. https://ardb.cbcb.umd.edu/documentations.shtml (дата обращения: 17.11.2018).
  22. McArthur A.G., Waglechner N., Nizam F. et al. The comprehensive antibiotic resistance database. Antimicrob. Agents Chemother. 2013; 57 (7): 3348–3357. doi: 10.1128/AAC.00419-13.
  23. Jia B., Raphenya A.R., Alcock B. et al. CARD 2017: expansion and model-centric curation of the ­comprehensive antibiotic resistance database. Nucleic Acids Res. 2017; 45 (D1): D566–D573. doi: 10.1093/nar/gkw1004.
  24. CARD — Comprehensive Antibiotic Resistance Database. https://card.mcmaster.ca/home (дата обращения: 23.11.2018).
  25. Zankari E., Hasman H., Cosentino S. et al. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012; 67 (11): 2640–2644. doi: 10.1093/jac/dks261.
  26. Zankari E. Comparison of the web tools ARG-­ANNOT and ResFinder for detection of resistance genes in bacteria. Antimicrob. Agents Chemother. 2014; 58 (8): 4986. doi: 10.1128/AAC.02620-14.
  27. ResFinder. https://cge.cbs.dtu.dk/services/ResFinder/ (access date: 23.11.2018).
  28. Gupta S.K., Padmanabhan B.R., Diene S.M. et al. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob. Agents Chemother. 2014; 58 (1): 212–220. doi: 10.1128/AAC.01310-13.
  29. O'Leary N.A., Wright M.W., Rodney Brister J.R. et al. Reference sequence (RefSeq) database at NCBI: status, taxo­nomic expansion, and functional annotation. Nucleic Acids Res. 2016; 44 (D1): D733–D45. doi: 10.1093/nar/gkv1189.
  30. Bacterial antimicrobial resistance reference gene database. https://www.ncbi.nlm.nih.gov/bioproject/PRJNA313047 (access date: 19.11.2018).
  31. Haft D.H., Selengut J.D., Richter R.A. et al. TIGRFAMs and Genome Properties in 2013. Nucleic Acids Res. 2013; 41: D387– D95. doi: 10.1093/nar/gks1234.
  32. Research strategy to address the knowledge gaps on the antimicrobial resistance effects of biocides. 2010. http://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_028.pdf (access date: 17.11.2018). doi: 10.2772/39297.
  33. Pal C., Bengtsson-Palme J., Rensing C. et al. BacMet: antibacterial biocide and metal resistance genes database. Nucleic Acids Res. 2014; 42: D737–D743. doi: 10.1093/nar/gkt1252.
  34. BacMet database. http://bacmet.biomedicine.gu.se/index.html (access date: 19.11.2018).
  35. Xavier B.B., Das A.J., Cochrane G. et al. Consolidating and exploring antibiotic resistance gene data resources. J. Clin. Microbiol. 2016; 54 (4): 851–859. doi: 10.1128/JCM.02717-15.

Supplementary files

Supplementary Files
Action
1. JATS XML

© 2019 Vinogradova A.G., Kuzmenkov A.Y.

Creative Commons License

This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.





Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».