母亲肥胖和糖尿病对儿童大脑发育的影响(机制和预防)

封面


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

该综述展示了临床和实验研究的结果,表明神经精神疾病的高发病率以及宫内发育期间的不良反应机制,其不良反应决定了肥胖和/或糖尿病母亲的子女的长期后果。考虑在计划阶段和怀孕期间采取预防措施。

作者简介

Inna Evsyukova

The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott

编辑信件的主要联系方式.
Email: eevs@yandex.ru
ORCID iD: 0000-0003-4456-2198

MD, PhD, DSci (Medicine), Professor, leading researcher. The Department of Physiology and Pathology of the Newborn

俄罗斯联邦, Saint Petersburg

参考

  1. Damm P, Houshmand-Oeregaard A, Kelstrup L, et al. Gestational diabetes mellitus and long-term consequences for mother and offspring: a view from Denmark. Diabetolo¬gia. 2016;59(7):1396-1399. https://doi.org/10.1007/s00125- 016-3985-5.
  2. Сonnolly N, Anixt J, Manning P, et al. Maternal metabolic risk factors for autism spectrum disorder-an analysis of electronic medical records and linked birth data. Autism Res. 2016;9(8):829-837. https://doi.org/10.1002/aur.1586.
  3. Edlow AG. Maternal obesity and neurodevelopmental and psychiatric disorders in offspring. Prenat. Diagn. 2017;37(1):95-110. https://doi.org/10.1002/pd.4932.
  4. Ferrara A. Increasing prevalence of gestational diabetes mellitus: a public health perspective. Diabetes Care. 2007;30 Suppl 2:S141-S146. https://doi.org/10.2337/dc07-s206.
  5. Gabbay-Benziv R, Baschat AA. Gestational diabetes as one of the “great obstetrical syndromes” – the maternal, placental, and fetal dialog. Best Pract Res Clin Obstet Gynaecol. 2015;29(2):150-155. https://doi.org/10.1016/j.bpobgyn.2014.04.025.
  6. Devlieger R, Benhalima K, Damm P, et al. Maternal obesity in Europe: where do we stand and how to move forward? A scientific paper commissioned by the European board and college of obstetrics and gynecology (EBCOG). Eur J Obstet Gynecol Reprod Biol. 2016;201:203-208. https://doi.org/10.1016/j.ejogrb.2016.04.005.
  7. Olfson M, Blanco C, Wang S, et al. National trends in the mental health care of children, adolescents, and adults by office-based physicians. JAMA Psychiatry. 2014;71(1):81-90. https://doi.org/10.1001/jamapsychiatry.2013.3074.
  8. Morris G, Fernandes BS, Puri BK, et al. Leaky brain in neuro¬logical and psychiatric disorders: drivers and consequen¬ces. Aust N Z J Psyhiatry. 2018;52(10):924-948. https://doi.org/10.1177/0004867418796955.
  9. Huang L, Yu X, Keim S, et al. Maternal obesity pre-pregnancy and child neurodevelopment in the collaborative perinatal project. Int J Epidemiol. 2014;43(3):783-792. https://doi.org/10.1093/ije/dyu030.
  10. Tanda R, Salsberry PJ, Reagan PB, Fang MZ. The impact of pre-pregnancy obesity on children’s cognitive test scores. Matern Child Health J. 2013;17(2):222-229. https://doi.org/10.1007/s10995-012-0964-4.
  11. Rodriguez A. Maternal pre-pregnancy obesity and risk for inattention and negative emotionality in children. J Child Psychol Psychiatry. 2010;51(2):134-143. https://doi.org/ 10.1111/j.1469-7610.2009.02133.x.
  12. Buss C, Entringer S, Davis EP, et al. Impaired executive function mediates the association between maternal pre-pregnancy body mass index and child ADHD symptoms. PLoS One. 2012;7(6):e37758. https://doi.org/10.1371/journal.pone.0037758.
  13. Basatemur E, Gardiner J, Williams C, et al. Maternal pre-pregnancy BMI and child cognition: a longitudinal cohort study. Pediatrics. 2013;131(1):56-63. https://doi.org/10.1542/peds.2012-0788.
  14. Bliddal M, Olsen J, Stovring H, et al. Maternal pre-pregnancy BMI and intelligence quotient (IQ) in 5-year-old children: a cohort based study. PLoS One. 2014;9(4):e94498. https://doi.org/10.1371/journal.pone.0094498.
  15. Krakowiak P, Walker CK, Bremer AA, et al. Maternal metabolic conditions and risk for autism and other neurodeve¬lopmental disorders. Pediatrics. 2012;129(5):e1121-1128. https://doi.org/10.1542/peds.2011-2583.
  16. Bilder DA, Bakian AV, Viskochil J, et al. Maternal pre¬natal weight gain and autism spectrum disorders. Pediatrics. 2013;132(5):e1276-1283. https://doi.org/10.1542/peds.2013-1188.
  17. Gardner RM, Lee BK, Magnusson C, et al. Maternal body mass index during early pregnancy, gestational weight gain, and risk of autism spectrum disorders: results from a Swe¬dish total population and discordant sibling study. Int J Epidemiol. 2015;44(3):870-883. https://doi.org/10.1093/ije/dyv081.
  18. Antoniou EE, Fowler T, Reed K, et al. Maternal pre-pregnancy weight and externalizing behavior problems in preschool children: a UK-based twin study. BMJ Open. 2014;4(4):e005974. https://doi.org/10.1136/bmjope-2014-005974.
  19. Lieshout RJ. Role of maternal adiposity prior to and during pregnancy in cognitive and psychiatric problemsin offspring. Nutr Rev. 2020;71 Suppl 1:95-101. https://doi.org/10.1111/nure.12059.
  20. Schaefer CA, Brown AS, Wyatt RJ, et al. Maternal pre-pregnant body mass and risk of schizophrenia in adult offspring. Schizophr Bull. 2000;26(2):275-286. https://doi.org/10.1093/oxfordjournals.schbul.a033452.
  21. Kawai M, Minabe Y, Takagai S, et al. Poor maternal care and high maternal body mass index in pregnancy as a risk factor for schizophrenia in offspring. Acta Psychiatr Scand. 2004;110(4): 257-263. https://doi.org/10.1111/j.1600-0447.2004.0380.x.
  22. Marmorstein NR, Iacono WG. Associations between depression and obesity in parents and their late-adolescent offspring: a community-based study. Psychosom Med. 2016;78(7):861-866. https://doi.org/10.1097/PSY.0000000 000000334.
  23. Харитонова Л.А., Папышева О.В., Катайш Г.А., и др. Состояние здоровья детей от матерей с сахарным диабетом // Российский вестник перинатологии и педиат¬рии. – 2018. – Т. 63. – № 3. – С. 26–31. [Kharitonova LA, Papysheva OV, Kataysh GA, et al. The state of health of children born to mothers with diabetes mellitus. Rossiy¬skiy vestnik perinatologii i pediatrii. 2018;63(3):26-31. (In Russ.)]. https://doi.org/10.21508/1027-4065-2018-63-3-26-31.
  24. Cordero MA, Garcia LB, Blanque RR, et al. [Maternal diabetes mellitus and its impact on child neurodevelopment: systemic review. (In Spanish)]. Nutr Hosp. 2015;32(6):2484-2495. https://doi.org/10.3305/nh.2015.32.6.10069.
  25. Towpik I, Wender-Ozegowska E. [Is diabetes mellitus worth treating? (In Polish)]. Ginekol Pol. 2014;85(3):220-225. https://doi.org/10.17772/gp/1717.
  26. Krzeczkowski JE, Boylan K, Arbuckle TE, et al. Neurodeve¬lopment in 3-4 year old children exposed to maternal hyperglycemia or adiposity in utero. Early Hum Dev. 2018;125:8-16. https://doi.org/10.1016/j.earlhumdev.2018.08.005.
  27. Van Lieshout RJ, Voruganti LP. Diabetes mellitus during pregnancy and increased risk of schizophrenia in offspring: a review of the evidence and putative mechanisms. J Psychiatry Neurosci. 2008;33(5):395-404.
  28. Dionne G, Boivin M, Srguin JR, et al. Gestational diabetes hinders language development in offspring. Pedi¬atrics. 2008;122(5):e1073-1079. https://doi.org/10.1542/peds.007-3028.
  29. Perna R, Loughan AR, Le J, Tyson K. Gestational diabetes: long-term central nervous system developmental and cognitive sequelae. Appl Neuropsychol Child. 2015;4(3):217-220. https://doi.org/19.1080/21622965.2013.874951.
  30. Евсюкова И.И. Молекулярные механизмы функционирования системы «мать – плацента – плод» при ожирении и гестационном сахарном диабете // Молекулярная медицина. − 2020. − Т. 18. − № 1. − С. 11–15. [Evsyukova II. Molecular mechanisms of the functioning system mother-placenta-fetus in women with obesity and gestational diabetes mellitus. Molekulyarnaya meditsina. 2020;18(1):11-15. (In Russ.)]. https://doi.org/10.29296/24999490-2020-01-02.
  31. Silha JV, Krsek M, Skrha JV, et al. Plasma resistin, adiponectin and leptin level in lean and obese subjects: correlations with insulin resistance. Eur J Endocrinol. 2003;149(4):331-335. https://doi.org/10.1530/eje.0.1490331.
  32. Sobrevia L, Salsoso R, Fuenzalida B, et al. Insulin is a key modulator of fetoplacental endothelium metabolic disturbances in gestational diabetes mellitus. Front Physiol. 2016;7:119. https://doi.org/10.3389/fphys.2016.00119.
  33. Montelongo A, Lasuncion MA, Pallardo E, Herrera E. Longitudinal study of plasma lipoproteins and hormones during pregnancy in normal and diabetic women. Diabetes. 1992;41(12):1651-1659. https://doi.org/10.2337/diab.41.12.1651.
  34. Sharafati-Chaleshtori R, Shirzad H, Rafiean-Kopaei M, Soltani A. Melatonin and human mitochondrial diseases. J Res Med Sci. 2017;22(2):1-11. https://doi.org/10.4103/ 1735-1995.199092.
  35. Lenna S, Han R, Trojanowska M. Endoplasmic reticulum stress and endothelial dysfunction. IUBMB Life. 2014;66(8):530-537. https://doi.org/10.1002/jub.1292.
  36. Liong S, Lappas M. Endoplasmic reticulum stress is increased in adipose tissue of women with gestational diabetes. PLoS One. 2015;10(4):e0122633. https://doi.org/10.1371/journal.pone.0122633.
  37. Bronson SL, Bale TL. The placenta as a mediator of stress effects on neurodevelopmental reprogramming. Neuropsychopharmacology. 2016;41(1):207-218. https://doi.org/ 10.1038/npp.2015.231.
  38. Edlow AG, Hui L, Wick HC, et al. Assessing the fetal effects of maternal obesity via transcriptomic analysis of cord blood: a prospective case-control study. BJOG. 2016;123(2): 180-189. https://doi.org/10.1111/1471-0528.13795.
  39. Allard C, Desgagne V, Patenaude J, et al. Mendelian randomization supports causality between maternal hyperglycemia and epigenetic regulation of leptin gene in newborns. Epigenetics. 2015;10(4):342-351. https://doi.org/10.1080/ 15592294.2015.1029700.
  40. Tozuka Y, Wada E, Wada K. Diet-induced obesity in female mice leads to peroxidized lipid accumulations and impairment of hippocampal neurogenesis during the early life of their offspring. FASEB J. 2009;23(6):1920-1934. https://doi.org/10.1096/fj.08-124784.
  41. Hami J, Shojae F, Vafaee-Nezhad S, et al. Some of the experimental and clinical aspects of the effects of the maternal diabetes on developing hippocampus. World J Diabetes. 2015;6(3):412-422. https://doi.org/10.4239/wjd.v6.i3.412.
  42. Khaksar Z, Jelodar GA, Hematian H. Morphometric study of cerebrum in fetuses of diabetic mothers. Iranian J Veterinary Res Shiraz University. 2011;12(36):199-204.
  43. White CL, Pistell PJ, Purpera MN, et al. Effects of high fat diet on Morris maze performance, oxidative stress, and inflammation in rats: contributions of maternal diet. Neurobiol Dis. 2009;35(1):3-13. https://doi.org/10.1016/j.nbd.2009.04.002.
  44. Challier JC, Basu S, Bintein T, et al. Obesity in pregnancy stimulates macrophage accumu- lation and inflammation in the placenta. Placenta. 2008;29(3):274-281. https://doi.org/10.1016/j.placenta.2007.12.010.
  45. Aye IL, Lager S, Ramirez VI, et al. Increasing maternal body mass index is associated with systemic inflammation in the mother and the activation of distinct placental inflammatory pathways. Biol Reprod. 2014;90(6):129. https://doi.org/10.1095/biolreprod.113.116186.
  46. Van der Burg JW, Sen S, Chomitz VR, et al. The role of systemic inflammation linking maternal BMI to neurodevelopment in children. Pediatr Res. 2016;79(1-1):3-12. https://doi.org/10.1038/pr.2015.179.
  47. Ogata J, Yamanishi H, Ishibashi-Ueda H. Review: role of cerebral vessels in ischaemic injury of the brain. Neuropathol Appl Neurobiol. 2011;37(1):40-55. https://doi.org/10.1111/j.1365-2990.2010.01141.x.
  48. Feldhaus B, Dietzel ID, Heumann R, Berger R. Effects of interferon-gamma and tumor necrosis factor-alpha on survival and differentiation of oligodendrocyte progenitors. J Soc Gynecol Investig. 2004;11(2):89-96. https://doi.org/10.1016/j.jsgi.2003.08.004.
  49. Goines PE, Croen LA, Braunschweig D, et al. Increased midgestational IFN-gamma, IL-4 and IL-5 in women bearing¬ a child with autism: a case-control study. Mol Autism. 2011;2:13. https://doi.org/10.1186/2040-2392-2-13.
  50. Bilbo SD, Tsang V. Enduring consequences of maternal obesity for brain inflammation and behavior of offspring. FASEB J. 2010;24(6):2104-2115. https://doi.org/10.1096.fj.09-144014.
  51. Sullivan EL, Nousen EK, Chamlou KA. Maternal high fat diet consumption during the perinatal period programs offspring behavior. Physiol Behav. 2014;123:236-242. https://doi.org/10.1016/j.physbeh.2012.07.014.
  52. Murabayashi N, Sugiyama T, Zhang L, et al. Maternal high-fat diets cause insulin resistance through inflammatory changes in fetal adipose tissue. Eur J Obstet Gynecol Reprod Biol. 2013;169(1):39-44. https://doi.org/10.1016/ j.ejogrb.2013.02.003.
  53. Cordner ZA, Tamashiro KL. Effects of high-fat diet exposure on learning and memory. Physiol Behav. 2015;152(pt B):363-371. https://doi.org/10.1016/j.physbeh.2015.06.008.
  54. Zhao WQ, Alkon DL. Role of insulin and insulin receptor in learning and memory. Mol Cell Endocrinol. 2001;177(1-2): 125-134. https://doi.org/10.1016/s0303-7207(01)00455-5.
  55. Sullivan EL, Grayson B, Takahashi D, et al. Chronic consumption of a high-fat diet during pregnancy causes perturbations in the serotonergic system and increased anxiety-like behavior in nonhuman primate offspring. J Neurosci. 2010;30(10):3826-3830. https://doi.org/10.1523/JNEUROSCI.5560-09.2010.
  56. Hauguel-de Mouzon S, Lepercq J, Catalano P. The known and unknown of leptin in pregnancy. Am J Obstet Gynecol. 2006;194(6):1537-1545. https://doi.org/10.1016/j.ajog. 2005.06.064.
  57. Dodds L, Fell DB, Shea S, et al. The role of prenatal, obstetric and neonatal factors in the development of autism. J Autism Dev Disord. 2011;41(7):891-902. https://doi.org/10.1007/s10803-010-1114-8.
  58. Alonso-Alconada D, Alvarez A, Lacalle J, Hilario E. Histological study of the protective effect of melatonin on neural cells after neonatal hypoxia-ischemia. Histol Histopathol. 2012;27(6):771-783. https://doi.org/10.14670/HH-27.771.
  59. Money KM, Barke TL, Serezani A, et al. Gestational diabetes exacerbates maternal immune activation effects in the developing brain. Molecular Psychiatry. 2018;23(9):1920-1928. https://doi.org/10.1038/mp.2017.191.
  60. Vucetic Z, Kimmel J, Totoki K, et al. Maternal high-fat diet alters methylation and gene expression of dopamine and opioid-related genes. Endocrinology. 2010;151(10):4756-4764. https://doi.org/10.1210/en.2010-0505.
  61. Naef L, Moquin L, Dal Bo G, et al. Maternal high-fat intake alters presynaptic regulation of dopamine in the nucleus accumbens and increases motivation for fat rewards in the offspring. Neuroscience. 2011;176:225-236. https://doi.org/ 10.1016/j.neuroscience.2010.12.037.
  62. Naef L, Gratton A, Walker CD. Exposure to high fat du¬ring early development impairs adaptations in dopamine and neuroendocrine responses to repeated stress. Stress. 2013;16(5): 540-548. https://doi.org/10.3109/10253890.2013.805321.
  63. Sullivan EL, Riper KM, Lockard R, Valleau JC. Maternal high-fat diet programming of the neuroendocrine system and behavior. Horm Behav. 2015;76:153-161. https://doi.org/10.1016/j.yhbeh.2015.04.008.
  64. Lu B, Nagappan G, Guan X, et al. BDNF-based synaptic repair as a disease-modifying strategy for neurodegenerative diseases. Nat Rev Neurosci. 2013;14(6):401-416. https://doi.org/10.1038/nrn3505.
  65. Molteni R, Barnard RJ, Ying Z, et al. A high-fat, refined su¬gar diet reduces hippocampal brain-derived neurotrophic factor, neuronal plasticity, and learning. Neuroscience. 2002;112(4):803-814. https://doi.org/10.1016/s0306-4522(02)00123-9.
  66. Page KC, Jones EK, Anday EK. Maternal and postweaning high-fat diets disturb hippocampal gene expression, lear¬ning, and memory function. Am J Physiol Regul Integr Comp Physiol. 2014;306(8): R527-537. https://doi.org/10.1152/ajpregu,00319.2013.
  67. Kang SS, Kurti A, Fair DA, Fryer JD. Dietary intervention rescues maternal obesity induced behavior deficits and neuroinflammation in offspring. J Neuroinflammation. 2014;11:156. https://doi.org/10.1186/s12974-014-0156-9.
  68. Carloni S, Favrais G, Saliba E, et al. Melatonin modulates neonatal brain inflammation through endoplasmic reticulum stress, autophagy, and mir-34a/silent information regulator 1 pathway. J Pineal Res. 2016;61(3):370-380. https://doi.org/10.1111/jpi.12354.
  69. Bouslama M, Renaud J, Oliver P, et al. Melatonin prevents learning disorders in brain-lesioned newborn mice. Neuroscience. 2007;150(3):712-719. https://doi.org/10.1016/ j.neuroscience.2007.09.030.
  70. Sagrillo-Fagundes L, Salustiano EMA, Yen PW. Melatonin in pregnancy: effects on brain development and CNS programming disorders. Curr Pharm Des. 2016;22(8):978-986. https://doi.org/10.2174/1381612822666151214104624.
  71. Liu S, Guo Y, Yuan Q. Melatonin prevents neural tube defects in the offspring of diabetic pregnancy. J Pineal Res. 2015;59(4):508-517. https://doi.org/10.1111/jpi.12282.
  72. Tain YL, Huang LT, Hsu CN. Developmental programming of adult disease: reprogramming by melatonin? Int J Mol Sci. 2017;18(2):426. https://doi.org/10/3390/ijms18020426.
  73. Арутюнян А.В., Евсюкова И.И., Полякова В.О. Роль мелатонина в морфофункциональном развитии мозга в раннем онтогенезе // Нейрохимия. − 2019. − Т. 36. − № 3. − С. 208–217. [Arutyunyan AV, Evsyukova II, Polyakova VO. The role of melatonin in morphofunctional developmentof the brain in early ontogeny. Neirohimiia. 2019;36(3):208-217. (In Russ.)]. https://doi.org/10.1134/S1027813319030038.
  74. Боровик Н.В., Главнова О.Б., Тиселько А.В., Суслова С.В. Планирование беременности у женщин с сахарным диабетом 2-го типа // Журнал акушерства и женских болезней. − 2017. − Т. 66. − № 4. − С. 25–31. [Borovik NV, Glavnova OB, Tisel’ko AV, Suslova SV. Pregnancy planning in women with diabetes mellitus type 2. Journal of obstetrics and women’s diseases. 2017;66(4):25-31. (In Russ.)]. https://doi.org/10.17816/JOWD66425-31.
  75. Kim SY, Deputy NP, Robbins CL. Diabetes during pregnancy: surveillance, preconception, care, and postpartum care. J Womens Health (Larchmt). 2018;27(5):536-541. https://doi.org/10.1089/jwh.2018.7052.
  76. Bolton JL, Bilbo SD. Development programming of brain ad behavior by perinatal diet: focus on inflammatory mechanisms. Dialogues Clin Neurosci. 2014;16(3):307-320.

版权所有 © Evsyukova I.I., 2020

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可

##common.cookie##