Staphylococcus aureus Adhesion to Titanium and Polypropylene Medical Implants: A Comparative Study
- Authors: Ivanov O.A.1,2, Bezhenar V.F.1, Tetz V.V.1, Palastin P.M.1,2, Kardava K.M.1, Pankratov D.L.1, Nikitina A.P.1
-
Affiliations:
- Academician I.P. Pavlov First St. Petersburg State Medical University
- City Mariinsky Hospital
- Issue: Vol 74, No 4 (2025)
- Pages: 25-34
- Section: Original study articles
- URL: https://journals.rcsi.science/jowd/article/view/338578
- DOI: https://doi.org/10.17816/JOWD646842
- EDN: https://elibrary.ru/DNCIAR
- ID: 338578
Cite item
Abstract
BACKGROUND: Infectious complications associated with the use of medical implants pose a significant challenge, particularly for materials prone to bacterial colonization and biofilm formation. Staphylococcus aureus is one of the most critical pathogens responsible for implant-associated infections. The physicochemical properties of implant surfaces, such as roughness, hydrophobicity, and chemical composition, influence bacterial adhesion. Currently, there is insufficient comparative data on Staphylococcus aureus adhesion to different materials used in gynecological practice, including polypropylene and titanium. Studying this process is essential for reducing the risk of infectious complications and optimizing implant properties.
AIM: The aim of this study was to conduct a comparative analysis of Staphylococcus aureus adhesion to titanium and polypropylene implants, assessing the impact of their physicochemical characteristics on bacterial attachment.
METHODS: This experimental comparative in vitro study examined two types of medical mesh implants made of polypropylene (Gynemesh PS, Johnson & Johnson, USA) and titanium (Titanium Silk, Elastic Titanium Implants Ltd., Russia). To assess the adhesive properties, a daily culture of Staphylococcus aureus VT209 was incubated with implant samples at 37 ℃ for 1 hour. After washing, bacterial adhesion was quantitatively assessed using culture-based methods. Scanning electron microscopy and energy-dispersive X-ray spectroscopy were employed to analyze surface microstructure and chemical composition.
RESULTS: Quantitative adhesion levels of Staphylococcus aureus to titanium and polypropylene meshes were similar (p > 0.05); however, bacterial distribution patterns differed. Polypropylene implants showed uniform bacterial adhesion, whereas titanium implants exhibited localized bacterial concentration at the edges. Scanning electron microscopy analysis revealed surface roughness and microdefects at the edges of titanium implants, likely contributing to increased bacterial adhesion. Energy-dispersive X-ray spectroscopy analysis indicated differences in chemical composition between central and edge regions of titanium implants, with edge areas containing additional elements (carbon, oxygen, fluorine, iron), possibly introduced during mechanical processing and oxidation.
CONCLUSION: While the overall bacterial adhesion levels on titanium and polypropylene implants were comparable, the observed differences in bacterial distribution suggest an increased risk of infection in mechanically processed titanium areas. Further research is needed to explore surface modification strategies for titanium implants to minimize bacterial adhesion, including improved surface treatments and antimicrobial coatings. These findings may contribute to the development of safer medical implants and a reduction in implant-associated infections.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Oleg A. Ivanov
Academician I.P. Pavlov First St. Petersburg State Medical University; City Mariinsky Hospital
Author for correspondence.
Email: ivanoffmd@gmail.com
ORCID iD: 0000-0002-6596-4105
SPIN-code: 8620-9749
MD
Russian Federation, Saint Petersburg; Saint PetersburgVitaly F. Bezhenar
Academician I.P. Pavlov First St. Petersburg State Medical University
Email: bez-vitaly@yandex.ru
ORCID iD: 0000-0002-7807-4929
SPIN-code: 8626-7555
MD, Dr. Sci. (Medicine), Professor
Russian Federation, Saint PetersburgVictor V. Tetz
Academician I.P. Pavlov First St. Petersburg State Medical University
Email: vtetzv@yahoo.com
ORCID iD: 0000-0001-9047-6763
SPIN-code: 4014-5771
MD, Dr. Sci. (Medicine), Professor
Russian Federation, Saint PetersburgPeter M. Palastin
Academician I.P. Pavlov First St. Petersburg State Medical University; City Mariinsky Hospital
Email: palastin.petr@mail.ru
ORCID iD: 0000-0003-3502-2499
SPIN-code: 8008-8723
MD, Cand. Sci. (Medicine)
Russian Federation, Saint Petersburg; Saint PetersburgKristina M. Kardava
Academician I.P. Pavlov First St. Petersburg State Medical University
Email: j_espere@yahoo.com
ORCID iD: 0000-0002-3325-9436
SPIN-code: 2471-3143
Russian Federation, Saint Petersburg
Danil L. Pankratov
Academician I.P. Pavlov First St. Petersburg State Medical University
Email: danil.pankratov@yahoo.com
ORCID iD: 0009-0009-9391-8200
SPIN-code: 6488-6900
Russian Federation, Saint Petersburg
Anastasiia P. Nikitina
Academician I.P. Pavlov First St. Petersburg State Medical University
Email: nikitina.anastasiia@yahoo.com
ORCID iD: 0009-0004-0929-5826
SPIN-code: 8487-1890
Russian Federation, Saint Petersburg
References
- Bezhenar VF, Bogatyreva EV, Pavlova NG; Ailamazyan EK, editor. Pelvic organ prolapse in women: etiology, pathogenesis, diagnostic principles. Saint Petersburg: N–L; 2010. 47 p. (In Russ.) EDN: QLSJPP
- Popov AA, Krasnopolskaya IV, Tyurina SS, et al. Sacrospinous fixation in pelvic organ prolapse treatment during the mesh technology era. Russian Bulletin of Obstetrician-Gynecologist. 2013;13(2):36–41. (In Russ.) EDN: OVZHQI
- Maurer MM, Rohrnbauer B, Feola A, et al. Mechanical biocompatibility of prosthetic meshes: a comprehensive protocol for mechanical characterization. J Mech Behav Biomed Mater. 2014;40:42–58. EDN: UXATMF doi: 10.1016/j.jmbbm.2014.08.014
- Feiner B, Jelovsek JE, Maher C. Efficacy and safety of transvaginal mesh kits in the treatment of prolapse of the vaginal apex: a systematic review. BJOG. 2009;116(1):15–24. doi: 10.1111/j.1471-0528.2008.02023.x
- Haylen BT, Freeman RM, Swift SE, et al. An International Urogynecological Association (IUGA)/International Continence Society (ICS) joint terminology and classification of the complications related directly to the insertion of prostheses (meshes, implants, tapes) and grafts in female pelvic floor surgery. Neurourol Urodyn. 2011;30(1):2–12. doi: 10.1002/nau.21036
- Chien H, Kumakura E, Koyama M. Iliosacral bacterial arthritis and rectoperitoneal abscess after tension-free vaginal mesh reconstruction. Int Urogynecol J. 2009;21(6):753–755. doi: 10.1007/s00192-009-0855-4
- Krasnopolskii VI, Popov AA, Abramyan KN, et al. Complications of extraperitoneal colpopexy using mesh prostheses: results of a multicenter study. Russian Bulletin of Obstetrician-Gynecologist. 2010;10(6):53–57. EDN: OJNSYO
- Li K, Yang X, Leng J, et al. Calcium peroxide nanoparticles-embedded coatings on anti-inflammatory TiO2 nanotubes for bacteria elimination and inflammatory environment amelioration. Small. 2021;17(47):2102907. EDN: OCZJLC doi: 10.1002/smll.202102907
- Vincenzo F, Del Gaudio A, Petito V, et al. Gut microbiota, intestinal permeability, and systemic inflammation: a narrative review. Emerg Med. 2024;19(2):275–293. EDN: SRRILJ doi: 10.1007/s11739-023-03374-w
- Schoultz I, Keita ÅV. The intestinal barrier and current techniques for the assessment of gut permeability. Cells. 2020;9(8):1909. EDN: ISCPDC doi: 10.3390/cells9081909
- Calabrese G, Franco D, Petralia S, et al. Dual-functional nano-functionalized titanium scaffolds to inhibit bacterial growth and enhance osteointegration. Nanomaterials. 2021;11(10):2634. EDN: LRHEOT doi: 10.3390/nano11102634
- Verhorstert K, Guler Z, Boer L, et al. In vitro bacterial adhesion and biofilm formation on fully absorbable poly-4-hydroxybutyrate and nonabsorbable polypropylene pelvic floor implants. ACS Appl Mater Interfaces. 2020;12(48):53646–53653. EDN: YSSMLK doi: 10.1021/acsami.0c14668
- Vadakkumpurath S, Venugopal A, Ullattil S. Influence of micro-textures on antibacterial behaviour of titanium-based implant surfaces: in vitro studies. Biosurface and Biotribology. 2019;5(1):20–23. doi: 10.1049/bsbt.2018.0023
- Hu Y, Zhou W, Zhu C, et al. The synergistic effect of nicotine and Staphylococcus aureus on peri-implant infections. Front Bioeng Biotechnol. 2021;9:658380. EDN: DHNPHB doi: 10.3389/fbioe.2021.658380
- Chen J, Zhu Y, Xiong M, et al. Antimicrobial titanium surface via click-immobilization of peptide and its in vitro/vivo activity. ACS Biomater Sci Eng. 2018;5(2):1034–1044. doi: 10.1021/acsbiomaterials.8b01046
- Arciola CR, Campoccia D, Speziale P, et al. Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials. 2012;33(26):5967–5982. EDN: PHCDQV doi: 10.1016/j.biomaterials.2012.05.031
- Tetz GV, Artemenko NK, Tetz VV. Effect of DNase and antibiotics on biofilm characteristics. Antimicrob Agents Chemother. 2009;53(3):1204–1209. EDN: LLRUFZ doi: 10.1128/AAC.00471-08
- Sysolyatina E, Petryakov A, Abdulkadieva M, et al. Use of non-thermal plasma for decontamination of titanium implants. Journal of Physics: Conference Series. 2022;2270:012045. EDN: QXAJKH doi: 10.1088/1742-6596/2270/1/012045
- Whitehead K, Li H, Kelly P. The antimicrobial properties of titanium nitride/silver nanocomposite coatings. Journal of Adhesion Science and Technology. 2011;25(17):2299–2315. doi: 10.1163/016942411X574970
- Filipović U, Dahmane RG, Ghannouchi S, et al. Bacterial adhesion on orthopedic implants. Adv Colloid Interface Sci. 2020;283:102228. EDN: PFRTRX doi: 10.1016/j.cis.2020.102228
- Li P, Tong Z, Huo L, et al. Antibacterial and biological properties of biofunctionalized nanocomposites on titanium for implant application. J Biomater Appl. 2016;31(2):205–214. doi: 10.1177/0885328216645951
- Yeo IS, Kim HY, Lim KS, et al. Implant surface factors and bacterial adhesion: a review of the literature. Int J Artif Organs. 2012;35(10):762–772. doi: 10.5301/ijao.5000154
- Nakhaei K, Ishijima M, Ikeda T, et al. Ultraviolet light treatment of titanium enhances attachment, adhesion, and retention of human oral epithelial cells via decarbonization. Materials. 2020;14(1):151. EDN: RDAWAZ doi: 10.3390/ma14010151
- Mayorga-Martinez C, Zelenka J, Klíma K, et al. Multimodal-driven magnetic microrobots with enhanced bactericidal activity for biofilm eradication and removal from titanium mesh. Adv Mater. 2023;35(23):2300191. EDN: JYSVAJ doi: 10.1002/adma.202300191
- Tambone E, Bonomi E, Ghensi P, et al. Rhamnolipid coating reduces microbial biofilm formation on titanium implants: an in vitro study. BMC Oral Health. 2021;21(1):49. EDN: EROFOI doi: 10.1186/s12903-021-01412-7
- Schmitz M, Riool M, Boer L, et al. Development of an antimicrobial peptide saap-148-functionalized supramolecular coating on titanium to prevent biomaterial-associated infections. Adv Mater Tech. 2023;8(13):2201846. EDN: ZJWHWS doi: 10.1002/admt.202201846
- Reśliński A, Dąbrowiecki S, Głowacka K. Biofilm formation on biomaterials used in hernia surgery. Med Biol Sci. 2014;28(3):35–44. doi: 10.12775/mbs.2014.023
- Sarfraz S, Mäntynen P, Laurila M, et al. Effect of surface tooling techniques of medical titanium implants on bacterial biofilm formation in vitro. Materials. 2022;15(9):3228. EDN: ONEJMC doi: 10.3390/ma15093228
- Döll K, Fadeeva E, Stumpp N, et al. Reduced bacterial adhesion on titanium surfaces micro-structured by ultra-short pulsed laser ablation. Bionanomaterials. 2016;17(1–2):53–57. doi: 10.1515/bnm-2015-0024
- Tapalskii DV, Nikolaev NS, Ovsyankin AV, et al. Coatings based on two-dimensionally ordered linear chain-like carbon for protecting titanium implants from microbial colonization. Traumatology and Orthopedics of Russia. 2019;25(2):111–120. EDN: WSDMXP doi: 10.21823/2311-2905-2019-25-2-111-120
- Gvetadze RSh, Dmitrieva NA, Voronin AN. Features of microorganism adhesion to dental materials used for gingival contour formation in implant-supported prosthetics. Stomatology. 2019;98(5):118–123. EDN: SPABNC doi: 10.17116/stomat201998051118
- Brusnitsyna EV, Ginkel DA, Prikhodkin AS, et al. Efficacy of topical fluoride application: a systematic review. Pediatric Dentistry and Prevention. 2023;23(1):70–82. EDN: LKSFUM doi: 10.33925/1683-3031-2023-598
Supplementary files
