Role of molecular signaling pathways in the pathogenesis of adenomyosis

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The prevalence of genital endometriosis and adenomyosis, in particular, is tending to increase. The lack of a complete understanding of the pathogenetic mechanisms and multifactorial causes of adenomyosis, the low effectiveness of existing drug therapy, and the importance of preserving reproductive function make it necessary to further study the pathogenesis of the disease, search for new non-invasive highly informative diagnostic methods and develop a new strategy for pathogenically based drug therapy. The review presents current data on the role of signaling pathways in the pathogenesis of the development of adenomyosis based on domestic and foreign literature sources retrieved from the electronic databases PubMed, CyberLeninka, and Google Scholar in the period from 1999 to 2020. Considerable emphasis is placed on the discussion of the research results in recent years. Based on the analysis, the role of transforming growth factor â (TGFβ), vascular endothelial growth factor (VEGF), dual-specificity protein phosphatase (PTEN), Notch receptors, and eukaryotic translation initiation factors (eIFs) in the signaling of adenomyosis is presented. Further advanced study of signaling pathways in the pathogenesis of adenomyosis will allow developing highly specific and highly sensitive markers for non-invasive diagnostics, as well as new directions for drug treatment of the disease.

About the authors

Maria A. Shalina

The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott

Author for correspondence.
Email: amarus@inbox.ru
ORCID iD: 0000-0002-5921-3217
SPIN-code: 6673-2660
Scopus Author ID: 57200072308
ResearcherId: A-7180-2019

MD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg

Maria I. Yarmolinskaya

The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott; North-Western State Medical University named after I.I. Mechnikov

Email: m.yarmolinskaya@gmail.com
ORCID iD: 0000-0002-6551-4147
SPIN-code: 3686-3605
Scopus Author ID: 7801562649
ResearcherId: P-2183-2014

MD, Dr. Sci. (Med.), Professor, Professor of the Russian Academy of Sciences

Russian Federation, Saint Petersburg

Elena A. Netreba

The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott

Email: dr.netlenka@yandex.ru
ORCID iD: 0000-0002-0485-3612
SPIN-code: 9193-3154
Scopus Author ID: 1093545
Russian Federation, Saint Petersburg

Alexandra K. Beganova

Saint Petersburg State University

Email: alexandra.beganova@yandex.ru
ORCID iD: 0000-0002-4705-7990
Russian Federation, Saint Petersburg

References

  1. Benagiano G, Brosens I, Habiba M. Structural and molecular features of the endomyometrium in endometriosis and adenomyosis. Hum Reprod Update. 2014;20(3):386–402. doi: 10.1093/humupd/dmt052
  2. Parazzini F, Mais V, Cipriani S, et al. Determinants of adenomyosis in women who underwent hysterectomy for benign gynecological conditions: results from a prospective multicentric study in Italy. Eur J Obstet Gynecol Reprod Biol. 2009;143(2):103–106. doi: 10.1016/j.ejogrb.2008.12.010
  3. Reinhold C, Tafazoli F, Mehio A, et al. Uterine adenomyosis: endovaginal US and MR imaging features with histopathologic correlation. RadioGraphics. 1999;19(suppl):S147–S160. doi: 10.1148/radiographics.19.suppl_1.g99oc13s147
  4. Sammour A, Pirwany I, Usubutun A, et al. Correlations between extent and spread of adenomyosis and clinical symptoms. Gynecol Obstet Invest. 2002;54(4):213–216. DOI: doi.org/10.1159/000068385
  5. Qi S, Zhao X, Li M, et al. Aberrant expression of Notch1/numb/snail signaling, an epithelial mesenchymal transition related pathway, in adenomyosis. Reprod Biol Endocrinol. 2015;13:96. doi: 10.1186/s12958-015-0084-2
  6. Guo SW. The Pathogenesis of adenomyosis vis-à-vis endometriosis. J Clin Med. 2020;9(2):485. doi: 10.3390/jcm9020485
  7. Leyendecker G, Wildt L, Mall G. The pathophysiology of endometriosis and adenomyosis: tissue injury and repair. Arch Gynecol Obstet. 2009;280(4):529–538. doi: 10.1007/s00404-009-1191-0
  8. Zhang Q, Duan J, Liu X, Guo SW. Platelets drive smooth muscle metaplasia and fibrogenesis in endometriosis through epithelial-mesenchymal transition and fibroblast-to-myofibroblast transdifferentiation. Mol Cell Endocrinol. 2016;428:1–16. doi: 10.1016/j.mce.2016.03.015
  9. Baranov V, Malysheva O, Yarmolinskaya M. Pathogenomics of endometriosis development. Int J Mol Sci. 2018;19(7):1852–1863. doi: 10.3390/ijms19071852
  10. Luft FC. Targeting epithelial-mesenchymal transition. J Mol Med. 2015;93(7):703–705. doi: 10.1007/s00109-015-1302-2
  11. Samatov T, Tonevitsky A, Schumacher U. Epithelial-mesenchymal transition: focus on metastatic cascade, alternative splicing, non-coding RNAs and modulating compounds. Mol Cancer. 2013;12(1):107. doi: 10.1186/1476-4598-12-107
  12. Yarmolinskaya MI, Shalina MA, Khachaturyan AR. Adenomyosis: from scientific discoveries to the practical aspects of prescribing drug therapy. Obstetrics and Gynecology. 2020;(3):182–190. (In Russ). doi: 10.18565/aig.2020.3.182-190
  13. Navas T, Kinders RJ, Lawrence SM, et al. Clinical evolution of epithelial-mesenchymal transition in human carcinomas. Cancer Res. 2020;80(2):304–318. doi: 10.1158/0008-5472.can-18-3539
  14. Pon YL, Zhou HY, Cheung AN, et al. p70 S6 kinase promotes epithelial to mesenchymal transition through snail induction in ovarian cancer cells. Cancer Res. 2008;68(16):6524–6532. doi: 10.1158/0008-5472.can-07-6302
  15. Papageorgis P. TGF signaling in tumor initiation, epithelial-to-mesenchymal transition, and metastasis. J Oncol. 2015;2015:587193. doi: 10.1155/2015/587193
  16. Yarmolinskaya MI, Molotkov AS, Denisova VM. Matrix metaloproteinases and inhibitors: classification, mechanism of action (review). Journal of obstetrics and women’s diseases. 2012;61(1):113–125. (In Russ)
  17. Cho ES, Kang HE, Kim NH, Yook JI. Therapeutic implications of cancer epithelial-mesenchymal transition (EMT). Arch Pharm Res. 2019;42(1):14–24. doi: 10.1007/s12272-018-01108-7
  18. Greening DW, Gopal SK, Mathias RA, et al. Emerging roles of exosomes during epithelial-mesenchymal transition and cancer progression. Semin Cell Dev Biol. 2015;40:60–71. doi: 10.1016/j.semcdb.2015.02.008
  19. Khan KN, Kitajima M, Hiraki K, et al. Involvement of hepatocyte growth factor-induced epithelial-mesenchymal transition in human adenomyosis. Biol Reprod. 2015;92(2):35. doi: 10.1095/biolreprod.114.124891
  20. Zheng H, Kang Y. Multilayer control of the EMT master regulators. Oncogene. 2013;33(14):1755–1763. doi: 10.1038/onc.2013.128
  21. Makker A, Goel M. Tumor progression, metastasis, and modulators of epithelial-mesenchymal transition in endometrioid endometrial carcinoma: an update. Endocr Relat Cancer. 2016;23(2):R85–R111. doi: 10.1530/erc-15-0218
  22. Zhang Q, Duan J, Olson M, et al. Cellular changes consistent with epithelial-mesenchymal transition and fibroblast-to-myofibroblast transdifferentiation in the progression of experimental endometriosis in baboons. Reprod Sci. 2016;23(10):1409–1421. doi: 10.1177/1933719116641763
  23. Huang T, Chen Y, Chou T, et al. Oestrogen-induced angiogenesis promotes adenomyosis by activating the Slug-VEGF axis in endometrial epithelial cells. J Cell Mol Med. 2014;18(7):1358–1371. doi: 10.1111/jcmm.12300
  24. Nieto M. The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol. 2002;3(3):155–166. doi: 10.1038/nrm757
  25. Dong C, Wu Y, Yao J, et al. G9a interacts with Snail and is critical for Snail-mediated E-cadherin repression in human breast cancer. J Clin Invest. 2012;122(4):1469–1486. doi: 10.1172/jci57349
  26. Kudo-Saito C, Shirako H, Takeuchi T, Kawakami Y. Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells. Cancer Cell. 2009;15(3):195–206. doi: 10.1016/j.ccr.2009.01.023
  27. Avtanski D, Garcia A, Caraballo B, et al. In vitro effects of resistin on epithelial to mesenchymal transition (EMT) in MCF-7 and MDA-MB-231 breast cancer cells — qRT-PCR and Westen blot analyses data. Data Brief. 2019;25:104118. doi: 10.1016/j.dib.2019.104118
  28. Ganesan R, Mallets E, Gomez-Cambronero J. The transcription factors Slug (SNAI2) and Snail (SNAI1) regulate phospholipase D (PLD) promoter in opposite ways towards cancer cell invasion. Mol Oncol. 2016;10(5):663–676. doi: 10.1016/j.molonc.2015.12.006
  29. Haslehurst AM, Koti M, Dharsee M, et al. EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer. BMC Cancer. 2012;12:91. doi: 10.1186/1471-2407-12-91
  30. Olmeda D, Montes A, Moreno-Bueno G, et al. Snai1 and Snai2 collaborate on tumor growth and metastasis properties of mouse skin carcinoma cell lines. Oncogene. 2008;27(34):4690–4701. doi: 10.1038/onc.2008.118
  31. Liu X, Shen M, Qi Q, et al. Corroborating evidence for platelet-induced epithelial-mesenchymal transition and fibroblast-to-myofibroblast transdifferentiation in the development of adenomyosis. Hum Reprod. 2016;31(4):734–749. doi: 10.1093/humrep/dew018
  32. Babunashvili EL, Buyanova SN, Shchukina NA. Role of different genetic alterations in the pathogenesis of uterine myoma and secondary messenger systems as potential pharmacodynamics targets. Rossijskij vestnik akushera-ginekologa. 2018;18(3):41–48. (In Russ.). doi: 10.17116/rosakush201818341-48
  33. Lee BS, Nowak RA. Human leiomyoma smooth muscle cells show increased expression of transforming growth factor-beta 3 (TGF beta 3) and altered responses to the antiproliferative effects of TGF beta. J Clin Endocrinol Metab. 2001;86(2):913–920. doi: 10.1210/jcem.86.2.7237
  34. Salama SA, Diaz-Arrastia CR, Kilic GS, Kamel MW. 2-Methoxyestradiol causes functional repression of transforming growth factor 3 signaling by ameliorating Smad and non-Smad signaling pathways in immortalized uterine fibroid cells. Fertil Steril. 2012;98(1):178–184. doi: 10.1016/j.fertnstert.2012.04.002
  35. Laping NJ, Everitt JI, Frazier KS, et al. Tumor-specific efficacy of transforming growth factor-beta RI inhibition in Eker rats. Clin Cancer Res. 2007;13(10):3087–3099. doi: 10.1158/1078-0432.ccr-06-1811
  36. Reichl P, Haider C, Grubinger M, Mikulits W. TGF- in epithelial to mesenchymal transition and metastasis of liver carcinoma. Curr Pharm Des. 2012;18(27):4135–4147. doi: 10.2174/138161212802430477
  37. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15(3):178–196. doi: 10.1038/nrm3758
  38. Barcena de Arellano ML, Arnold J, Lang H, et al. Evidence of neurotrophic events due to peritoneal endometriotic lesions. Cytokine. 2013;62(2):253–261. doi: 10.1016/j.cyto.2013.03.003
  39. Yarmolinskaya MI, Ajlamazyan EK. Genital’nyj endometrioz. Razlichnye grani problemy. Saint Petersburg: Eko-Vektor; 2017. (In Russ.)
  40. Solomahina MA. Kliniko – morfologicheskaja harakteristika adenomioza [dissertation abstract]. Moscow; 2006. (In Russ). [cited 2020 Dec 09]. Available from: http://medical-diss.com/docreader/280727/a?#?page=1
  41. Orazov MR, Nosenko EN, Radzinsky VE, et al. Proangiogenic features in chronic pelvic pain caused by adenomyosis. Gynecol Endocrinol. 2016;32(suppl. 2):7–10. doi: 10.1080/09513590.2016.1232902
  42. Sahoo SS, Lombard JM, Ius Y, et al. Adipose-derived VEGF-mTOR signaling promotes endometrial hyperplasia and cancer: implications for obese women. Mol Cancer Res. 2018;16(2):309–321. doi: 10.1158/1541-7786.mcr-17-0466
  43. Li J, Ma J, Fei X, et al. Roles of cell migration and invasion mediated by Twist in endometriosis. J Obstet Gynaecol Res. 2019;45(8):1488–1496. doi: 10.1111/jog.14001
  44. Furuya M, Masuda H, Hara K, et al. ZEB1 expression is a potential indicator of invasive endometriosis. Acta Obstet Gynecol Scand. 2017;96(9):1128–1135. doi: 10.1111/aogs.13179
  45. Qian X, Anzovino A, Kim S, et al. N-cadherin/FGFR promotes metastasis through epithelial-to-mesenchymal transition and stem/progenitor cell-like properties. Oncogene. 2014;33(26):3411–3421. doi: 10.1038/onc.2013.310
  46. Lee Y, Chen M, Pandolfi P. The functions and regulation of the PTEN tumour suppressor: new modes and prospects. Nature Reviews Molecular Cell Biology. 2018;19(9):547–562. doi: 10.1038/s41580-018-0015-0
  47. Hu H, Li H, He Y. MicroRNA-17 downregulates expression of the PTEN gene to promote the occurrence and development of adenomyosis. Exp Ther Med. 2017;14(4):3805–3811. doi: 10.3892/etm.2017.5013
  48. Shkljar AA. Diagnostika, hirurgicheskoe lechenie i reabilitacija zhenshhin reproduktivnogo vozrasta s uzlovoj formoj adenomioza [dissertation]. Moscow; 2015. (In Russ.). [cited 2020 Dec 09]. Available from: http://www.science.ncagp.ru/upfiles/pdf/ShklyarAA_diss.pdf
  49. Wang Z, Li Y, Kong D, Sarkar FH. The role of Notch signaling pathway in epithelial-mesenchymal transition (EMT) during development and tumor aggressiveness. Curr Drug Targets. 2010;11(6):745–751. doi: 10.2174/138945010791170860
  50. Groot AJ, Vooijs MA. The role of Adams in Notch signaling. Adv Exp Med Biol. 2012;727:15–36. doi: 10.1007/978-1-4614-0899-4_2
  51. Bolos V, Peinado H, Perez-Moreno MA, et al. The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci. 2003;116(pt.3):499–511. doi: 10.1242/jcs.00224
  52. Wilson A, Radtke F. Multiple functions of Notch signaling in self-renewing organs and cancer. FEBS Lett. 2006;580(12):2860–2868. doi: 10.1016/j.febslet.2006.03.024
  53. Wang Z, Zhang Y, Li Y, et al. Down-regulation of Notch-1 contributes to cell growth inhibition and apoptosis in pancreatic cancer cells. Mol Cancer Ther. 2006;5(3):483–493. doi: 10.1158/1535-7163.mct-05-0299
  54. Reedijk M, Odorcic S, ChangL, et al. High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res. 2005;65(18):8530–8537. doi: 10.1158/0008-5472.can-05-1069
  55. Kunnimalaiyaan M, Vaccaro AM, Ndiaye MA, Chen H. Overexpression of the NOTCH1 intracellular domain inhibits cell proliferation and alters the neuroendocrine phenotype of medullary thyroid cancer cells. J Biol Chem. 2006;281(52):39819–39830. doi: 10.1074/jbc.m603578200
  56. Cobellis L, Caprio F, Trabucco E, et al. The pattern of expression of Notch protein members in normal and pathological endometrium. J Anat. 2008;213(4):464–472. doi: 10.1111/j.1469-7580.2008.00963.x
  57. Matsuno Y, Coelho AL, Jarai G, et al. Notch signaling mediates TGF-1-induced epithelial-mesenchymal transition through the induction of Snai1. Int J Biochem Cell Biol. 2012;44(5):776–789. doi: 10.1016/j.biocel.2012.01.021
  58. Leong KG, Niessen K, Kulic I, et al. Jagged1-mediated Notch activation induces epithelial-to-mesenchymal transition through Slug-induced repression of E-cadherin. J Exp Med. 2007;204(12):2935–2948. doi: 10.1084/jem.20071082
  59. Gonzalez DM, Medici D. Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal. 2014;7(344):re8. doi: 10.1126/scisignal.2005189
  60. Wu K, Chen K, Wang C, et al. Cell fate factor DACH1 represses YB-1-mediated oncogenic transcription and translation. Cancer Res. 2014;74(3):829–839. doi: 10.1158/0008-5472.can-13-2466
  61. Mikhailik A, Mazella J, Liang S, Tseng L. Notch ligand-dependent gene expression in human endometrial stromal cells. Biochem Biophys Res Commun. 2009;388(3):479–482. doi: 10.1016/j.bbrc.2009.07.037
  62. Mitsuhashi Y, Horiuchi A, Miyamoto T, et al. Prognostic significance of Notch signalling molecules and their involvement in the invasiveness of endometrial carcinoma cells. Histopathology. 2012;60(5):826–837. doi: 10.1111/j.1365-2559.2011.04158.x
  63. Mori M, Miyamoto T, Yakushiji H, et al. Effects of N-[N-(3, 5-difluorophenacetyl-L-alanyl)]-S-phenylglycine t-butyl ester (DAPT) on cell proliferation and apoptosis in Ishikawa endometrial cancer cells. Hum Cell. 2012;25(1):9–15. doi: 10.1007/s13577-011-0038-8
  64. Wei Y, Zhang Z, Liao H, et al. Nuclear estrogen receptor-mediated Notch signaling and GPR30-mediated PI3K/AKT signaling in the regulation of endometrial cancer cell proliferation. Oncol Rep. 2012;27(2):504–510. doi: 10.3892/or.2011.1536
  65. Jiang X, Xing H, Kim TM, et al. Numb regulates glioma stem cell fate and growth by altering epidermal growth factor receptor and Skp1-Cullin-F-box ubiquitin ligase activity. Stem Cells. 2012;30(7):1313–1326. doi: 10.1002/stem.1120
  66. Ding D, Liu X, Duan J, Guo SW. Platelets are an unindicted culprit in the development of endometriosis: clinical and experimental evidence. Hum Reprod. 2015;30(4):812–832. doi: 10.1093/humrep/dev025
  67. Guo SW, Ding D, Shen M, Liu X. Dating endometriotic ovarian cysts based on the content of cyst fluid and its potential clinical implications. Reprod Sci. 2015;22(7):873–883. doi: 10.1177/1933719115570907
  68. Parasuraman P, Mulligan P, Walker JA, et al. Interaction of p190A RhoGAP with eIF3A and other translation preinitiation factors suggests a role in protein biosynthesis. J Biol Chem. 2017;292(7):2679–2689. doi: 10.1074/jbc.m116.769216
  69. Cai X, Shen M, Liu X, Guo SW. Reduced expression of eukaryotic translation initiation factor 3 subunit e and its possible involvement in the epithelial-mesenchymal transition in endometriosis. Reprod Sci. 2018;25(1):102–109. doi: 10.1177/1933719117702248
  70. Wu Q, Ding D, Liu X, Guo SW. Evidence for a hypercoagulable state in women with ovarian endometriomas. Reprod Sci. 2015;22(9):1107–1114. doi: 10.1177/1933719115572478
  71. Cai X, Shen M, Liu X, Nie J. The possible role of eukaryotic translation initiation factor 3 subunit e (eIF3e) in the epithelial-mesenchymal transition in adenomyosis. Reprod Sci. 2019;26(3):377–385. doi: 10.1177/1933719118773490

Copyright (c) 2021 Eсо-Vector



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies