Gas chromatography-mass spectrometry-based metabolic profiling of androgens, progestins and glucocorticoids in women with polycystic ovary syndrome

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Hypothesis/aims of study. Polycystic ovary syndrome (PCOS) is a common disease. Depending on the diagnostic criteria, the disease is seen in 10-20% of women of reproductive age and accounts for 70-80% of all forms of hyperandrogenic syndrome. PCOS is a heterogeneous condition of multifactorial etiology characterized by various clinical, endocrine and metabolic disorders. Therefore, it is important to clarify the specific features of steroid hormone biosynthesis and metabolism and steroidogenesis enzyme activity, as well as to search for new laboratory criteria for early diagnosis and prompt treatment. The aim of this study was to perform metabolic profiling of androgens, progestins and glucocorticoids using gas chromatography-mass spectrometry (GC-MS) in obese and non-obese women with PCOS.

Study design, materials and methods. We examined 53 women of reproductive age diagnosed with PCOS. The first group included 30 women aged 22 to 29 years with normal body weight. The second group comprised 23 obese patients aged 25 to 33 years with an average body mass index (BMI) of 35.3 ± 0.4 kg/m2. The control group consisted of 25 healthy women aged 26 ± 0.6 years having a normal BMI without clinical and biochemical signs of hyperandrogenism. Immunoassay methods were used to determine the serum levels of luteinizing hormone, follicle-stimulating hormone, free testosterone, 17-hydroxyprogesterone, and sex hormone-binding globulin. A glucose tolerance test was performed to determine glucose and insulin levels before and after load. Urine steroid profiles were studied by GC-MS with the optimization of the sample preparation schedule. Statistical data processing was performed using the STATISTICA for WINDOWS software system (version 10). The main quantitative characteristics of the patients are presented as the median (Me), the 25th percentile and the 75th percentile (Q25Q75). To compare the results obtained in the study groups, the nonparametric Mann-Whitney test was used. The 95% confidence interval was considered statistically significant.

Results. The article presents a metabolomics analysis of androgens, glucocorticoid hormones and progestins in women with PCOS compared to the control group. It was revealed that non-obese patients with PCOS had increased urinary excretion of androstenedione metabolites, dehydroepiandrosterone and its metabolites, 17-hydroxypregnanolone, pregnantriol, and 5-ene-pregnenes, while obese patients with PCOS had increased that of androsterone and dehydroepiandrosterone metabolites (16-oxo-androstenediol and androstenediol-17β) compared to the control group findings. Decreased ratios of cortisol and cortisone tetrahydro metabolite amount to the levels of 11-oxo-pregnanetriol, pregnanetriol and 17-hydroxypregnenolone, when compared to the control group, was obtained in non-obese patients with PCOS, which indicates 21-hydroxylase deficiency. In obese patients with PCOS, four signs of increased 5α-reductase activity were obtained, and in PCOS patients with a normal BMI, three signs were obtained, which indicates varying 5α-reductase activity in PCOS patients depending on the BMI.

Conclusion. Quantitative evaluation of androgen and progestin metabolites, as well as 5α- and 5β-metabolites of androstenedione and glucocorticoids in the study of urine steroid profiles by GC-MS method opens new opportunities for PCOS diagnostics.

About the authors

Natalya V. Vorokhobina

North-Western State Medical University named after I.I. Mechnikov

Author for correspondence.
Email: natalya.vorokhobina@szgmu.ru
ORCID iD: 0000-0002-9574-105X
SPIN-code: 4062-6409

MD, PhD, DSci (Medicine), Professor, Head of the Department of Endocrinology named after academician V.G. Baranov

Russian Federation, Saint Petersburg

Lyudmila I. Velikanova

North-Western State Medical University named after I.I. Mechnikov

Email: velikanova46@gmail.com
ORCID iD: 0000-0002-9352-4035

PhD, DSci (Biology), Professor, Head of the Research Laboratory of Chromatography

Russian Federation, Saint Petersburg

Olga B. Glavnova

The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott

Email: o.glavnova@mail.ru
ORCID iD: 0000-0001-6087-252X

MD

Russian Federation, Saint Petersburg

Ekaterina V. Malevanaya

North-Western State Medical University named after I.I. Mechnikov

Email: obedkovaev@gmail.com
ORCID iD: 0000-0003-0880-0814

PhD, Senior Researcher

Russian Federation, Saint Petersburg

Ravilya K. Galakhova

North-Western State Medical University named after I.I. Mechnikov

Email: rgalakhova@gmail.com
ORCID iD: 0000-0003-3599-3199
SPIN-code: 1865-2310

MD, PhD, Associate Professor

Russian Federation, Saint Petersburg

Irina Yu. Matezius

North-Western State Medical University named after I.I. Mechnikov

Email: imatezius@rambler.ru
ORCID iD: 0000-0002-8694-9756
SPIN-code: 7421-1610

MD, PhD, Associate Professor. The Department of Endocrinology named after academician V.G. Baranov

Russian Federation, Saint Petersburg

References

  1. Escobar-Morreale HF. Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. Nat Rev Endocrinol. 2018;14(5):270-284. https://doi.org/10.1038/nrendo.2018.24.
  2. March WA, Moore VM, Willson KJ, et al. The prevalence of polycystic ovary syndrome in a community sample assessed under contrasting diagnostic criteria. Hum Reprod. 2010;25(2):544-551. https://doi.org/10.1093/humrep/dep399.
  3. Манухин И.Б., Геворкян М.А., Кушлинский Н.Е. Синдром поликистозных яичников. – М.: МИА, 2004. – 190 c. [Manukhin IB, Gevorkyan MA, Kushlinskiy NE. Sindrom polikistoznykh yaichnikov. Moscow: MIA; 2004. 190 p. (In Russ.)]
  4. Pasquali R, Gambineri A, Pagotto U. The impact of obesity on reproduction in women with polycystic ovary syndrome. BJOG. 2006;113(10):1148-1159. https://doi.org/10.1111/j.1471-0528.2006.00990.x.
  5. Cоболева Е.Л., Потин В.В., Тарасова М.А. Гирсутизм: пособие для врачей. – СПб., 2007. – 49 c. [Soboleva EL, PotinVV, Tarasova MA. Girsutism: posobie dlya vrachey. Saint Petersburg; 2007. 49 p. (In Russ.)]
  6. Hart R, Doherty DA. The potential implications of a PCOS diagnosis on a woman’s long-term health using data linkage. J Clin Endocrinol Metab. 2015;100(3):911-919. https://doi.org/10.1210/jc.2014-3886.
  7. Trimble CL, Method M, Leitao M, et al. Management of endometrial precancers. Obstet Gynecol. 2012;120(5):1160-1175. https://doi.org/10.1097/aog.0b013e31826bb121.
  8. Papadakis G, Kandaraki E, Papalou O, et al. Is cardiovascular risk in women with PCOS a real risk? Current insights. Minerva Endocrinol. 2017;42(4):340-355. https://doi.org/ 10.23736/S0391-1977.17.02609-8.
  9. Haoula Z, Salman M, Atiomo W. Evaluating the association between endometrial cancer and polycystic ovary syndrome. Hum Reprod. 2012;27(5):1327-1331. https://doi.org/10.1093/humrep/des042.
  10. Setji TL, Brown AJ. Polycystic ovary syndrome: Update on diagnosis and treatment. Am J Med. 2014;127(10):912-919. https://doi.org/10.1016/j.amjmed.2014.04.017.
  11. Dumitrescu R, Mehedintu C, Briceag I, et al. The polycystic ovary syndrome: An update on metabolic and hormonal mechanisms. J Med Life. 2015;8(2):142-145.
  12. Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril. 2004;81(1):19-25. https://doi.org/10.1016/j.fertnstert.2003.10.004.
  13. Fauser BC, Tarlatzis BC, Rebar RW, et al. Consensus on women’s health aspects of polycystic ovary syndrome (PCOS): The Amsterdam ESHRE/ASRM-Sponsored 3rd PCOS Consensus Workshop Group. Fertil Steril. 2012;97(1):28-38.e25. https://doi.org/10.1016/j.fertnstert.2011.09.024.
  14. Moran C, Arriaga M, Rodriguez G, Moran S. Obesity differentially affects phenotypes of polycystic ovary syndrome. Int J Endocrinol. 2012;2012:317241. https://doi.org/10.1155/2012/317241.
  15. Panidis D, Tziomalos K, Misichronis G, et al. Insulin resistance and endocrine characteristics of the different phenotypes of polycystic ovary syndrome: A prospective study. Hum Reprod. 2012;27(2):541-549. https://doi.org/10.1093/ humrep/der418.
  16. Neves EM, Fonseca AM, Bagnoli VR, et al. Polycystic ovary syndrome: Correlation between phenotypes and metabolic syndrome. J Steroids Horm Sci. 2014;5(2):132. https://doi.org/10.4172/2157-7536.1000132.
  17. Goverde AJ, van Koert AJ, Eijkemans MJ, et al. Indicators for metabolic disturbances in anovulatory women with polycystic ovary syndrome diagnosed according to the Rotterdam consensus. Hum Reprod. 2009;24(3):710-717. https://doi.org/10.1093/humrep/den433.
  18. Teede HJ, Misso ML, Costello MF, et al. Erratum. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Hum Reprod. 2019;34(2):388. https://doi.org/10.1093/humrep/dey363.
  19. Ehrmann DA. Metabolic dysfunction in PCOS: Relationship to obstructive sleep apnea. Steroids. 2012;77(4):290-294. https://doi.org/10.1016/j.steroids.2011.12.001.
  20. Pasquali R, Casimirri F. The impact of obesity on hyperandrogenism and polycystic ovary syndrome in premenopausal women. Clin Endocrinol. 1993;39(1):1-16. https://doi.org/10.1111/j.1365-2265.1993.tb01744.x.
  21. Burghen GA, Givens JR, Kitabchi AE. Correlation of hyperandrogenism with hyperinsulinism in polycystic ovarian disease. J Clin Endocrinol Metab. 1980;50(1):113-116. https://doi.org/10.1210/jcem-50-1-113.
  22. Dunaif A. Insulin resistance and the polycystic ovary syndrome: Mechanism and implications for pathogenesis. Endocr Rev. 1997;18(6):774-800. https://doi.org/10.1210/edrv.18.6.0318.
  23. Qin KN, Rosenfield RL. Role of cytochrome P450c17 in polycystic ovary syndrome. Mol Cell Endocrinol. 1998;145(1-2): 111-121. https://doi.org/10.1016/s0303-7207(98)00177-4.
  24. Bremer AA, Miller WL. The serine phosphorylation hypothesis of polycystic ovary syndrome: A unifying mechanism for hyperandrogenemia and insulin resistance. Fertil Steril. 2008;89(5):1039-1048. https://doi.org/10.1016/j.fertnstert. 2008.02.091.
  25. Ворохобина Н.В., Татаринова М.В., Великанова Л.И., и др. Особенности метаболизма стероидных гормонов у женщин репродуктивного возраста с различными формами гиперандрогении // Вестник Северо-Западного государственного медицинского университета им. И.И. Мечникова. − 2016. − Т. 8. − № 3. − С. 42–49. [Vorokhobina NV, Tatarinova MV, Velikanova LI, et al. Features of steroid hormone metabolism in fertile age females with various forms of hyperandrogenism. Herald of the Northwestern State Medical University named after I.I. Mechnikov. 2016;8(3):42-49. (In Russ.)]
  26. Gambineri A, Vicennati V, Genghini S, et al. Genetic variation in 11beta-hydroxysteroid dehydrogenase type 1 predicts adrenal hyperandrogenism among lean women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2006;91(6):2295-2302. https://doi.org/10.1210/jc. 2005-2222.
  27. Yuying D, Yifei Z, Shengxian L, et al. Steroid hormone profilingin obese and non obese women with polycystic ovary syndrome. Sci Rep. 2017;7(1):14156. https://doi.org/10.1038/s41598-017-14534-2.
  28. Матюшко М.В. Нарушения метаболизма стероидных гормонов у женщин репродуктивного возраста с ожирением и гиперандрогенией: автореф. дис. … канд. мед. наук. – СПб., 2018. – 23 с. [Matyushko MV. Narusheniya metabolizma steroidnykh gormonov u zhenshchin reproduktivnogo vozrasta s ozhireniem i giperandrogeniey. [dissertation] Saint Petersburg; 2018. 23 p. (In Russ.)]
  29. Setji TL, Brown AJ. Polycystic ovary syndrome: Update on diagnosis and treatment. Am J Med. 2014;127(10):912-919. https://doi.org/10.1016/j.amjmed.2014.04.017.
  30. Goodarzi MO, Carmina E, Azziz R. DHEA, DHEAS and PCOS. J Steroid Biochem Mol Biol. 2015;145:213-225. https://doi.org/10.1016/j.jsbmb.2014.06.003.
  31. Dhayat NA, Marti N, Kollmann Z, et al. Urinary steroid profiling in women hints at a diagnostic signature of the polycystic ovary syndrome: A pilot study considering neglected steroid metabolites. PLoS One. 2018;13(10):e0203903. https://doi.org/10.1371/journal.pone.0203903.
  32. Fassnacht M, Schlenz N, Schneider SB, et al. Beyond adrenal and ovarian androgen generation: Increased peripheral 5 alpha-reductase activity in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2003;88(6):2760-2766. https://doi.org/10.1210/jc.2002-021875.
  33. Torchen LC, Idkowiak J, Fogel NR, et al. Evidence for Increased 5α-reductase activity during early childhood in daughters of women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2016;101(5):2069-2075. https://doi.org/10.1210/jc.2015-3926.
  34. Dhayat NA, Marti N, Kollmann Z, et al. Urinary steroid profiling in women hints at a diagnostic signature of the polycystic ovary syndrome: A pilot study considering neglected steroid metabolites. PLoS One. 2018;13(10):e0203903. https://doi.org/10.1371/journal.pone.0203903.
  35. Gambineri A, Vicennati V, Genghini S, et al. Genetic variation in 11beta-hydroxysteroid dehydrogenase type 1 predicts adrenal hyperandrogenism among lean women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2006;91(6):2295-2302. https://doi.org/10.1210/jc. 2005-2222.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Urinary excretion of androgens in normal weight and obese patients with polycystic ovary syndrome (data obtained using gas chromatography-mass spectrometry). PCOS, polycystic ovary syndrome; BMI, body mass index; An, androsterone; Et, etiocholanolone; DHEA, dehydroepiandrosterone; dA2, androstenediol; dA3, androstenetriol

Download (118KB)
3. Fig. 2. Urinary excretion of glucocorticoid tetrahydro metabolites in normal weight and obese patients with polycystic ovary syndrome (data obtained using gas chromatography-mass spectrometry). PCOS, polycystic ovary syndrome; BMI, body mass index; THS, tetrahydro-11-deoxycortisol; THE, tetrahydrocortisone; ТНВ, tetrahydrocorticosterone

Download (87KB)
4. Fig. 3. Urinary excretion of 17-hydroxyprogesterone metabolites and 5-ene-pregnenes in normal weight and obese patients with polycystic ovary syndrome (data obtained using gas chromatography-mass spectrometry). PCOS, polycystic ovary syndrome; BMI, body mass index; 17P, 17-hydroxypregnenolone; P3, pregnanetriol; P2, pregnanediol; dP2, pregnenediol; dP3, pregnenetriol

Download (116KB)

Copyright (c) 2020 Vorokhobina N.V., Velikanova L.I., Glavnova O.B., Malevanaya E.V., Galakhova R.K., Matezius I.Y.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies