Assessment of actual nutrition in the first trimester of pregnancy as a premorbid indicator

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

AIM: The aim of this study was to assess the actual nutrition of pregnant women in the first trimester as the basis for a personalized approach to pregnancy management.

MATERIALS AND METHODS: The actual nutrition during pregnancy was studied by analyzing the frequency of food consumption using the food weighing method, and the average daily indicators were calculated based on data for a period of one week. In total, 417 women were surveyed. The diet was characterized to identify deficiencies of the vitamins and minerals most significant for the reproductive system using the Individual Diet (My Body 3.0 version) software. Descriptive statistics methods were used to quantify the results. In the course of the work carried out, descriptive statistics methods were used.

RESULTS: The energy value of the daily diet of pregnant women averaged 2294.3 ± 487.21 kcal, which is within normal values (2070.0–3507.5 kcal / day), a surplus being observed in almost a third of the respondents (n = 118, 28.3%). The analysis of the diet showed that most of the patients had a deficiency in vitamins, macro- and microelements most significant for the reproductive system. On average, pregnant women consumed 155.0 ± 0.52 μg / day of folic acid with food, no woman receiving enough folic acid to prevent congenital malformations of the fetus. The average dietary intake of iodine was 70 μg / day. Thus, focusing on the recommendations for pregnant women, a diet deficient in iodine was observed in 90% of the respondents, and only five women (1.2%) consumed a sufficient amount of iodine-containing products. It was found that pregnant women consumed 5.9 ± 2.10 mg / day of zinc, with the recommended intake level of more than 12.5 mg / day not recorded in any woman. Iron deficiency was found in 289 respondents (69%). According to the survey results, more than half of the respondents (n = 269, 64.5%) had insufficient selenium intake. Calcium deficiency was registered in half of pregnant women (n = 210, 50.0%). Only every tenth woman (n = 48, 10.0%) consumed a sufficient amount of calcium containing food. Poor magnesium consumption was rarer and was found in only one third of the respondents (n = 135, 32.0%).

CONCLUSIONS: The data obtained indicate the need to study the individual level of actually consumed vitamins and nutrients, which may be the basis for personalized selection of drugs and efficient microelement dosing strategy.

About the authors

Gulnara K. Sadykova

Academician Ye.A. Vagner Perm State Medical University

Author for correspondence.
Email: gulnara-sadykova@mail.ru
ORCID iD: 0000-0003-1868-8336
SPIN-code: 8730-4583
Scopus Author ID: 57190665849
ResearcherId: T-7788-2017

MD, PhD, Assistant Professor

Russian Federation, 26 Petropavlovskaya str., Perm, 614000

Anna A. Olina

Academician Ye.A. Vagner Perm State Medical University; The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott; North-Western State Medical University named after I.I. Mechnikov

Email: olina29@mail.ru
ORCID iD: 0000-0001-9101-7569
SPIN-code: 4255-4325
http://clinic.psma.ru/o-tsentre/rukovodstvo/39-olina-anna-aleksandrovna.html

MD, PhD, DSci (Medicine)

Russian Federation, 26 Petropavlovskaya str., Perm, 614000vlovskaya street, 26; Saint Petersburg; Saint Petersburg

Mikhail M. Padrul

Academician Ye.A. Vagner Perm State Medical University

Email: m-padrul@mail.ru
SPIN-code: 3347-1977

MD, PhD, DSci (Medicine), Professor

Russian Federation, 26 Petropavlovskaya str., Perm, 614000

References

  1. Qiao Y, Wen J, Tang F, et al. Whole exome sequencing in recurrent early pregnancy loss. Mol Hum Reprod. 2016;22(5):364–372. doi: 10.1093/molehr/gaw008
  2. Fukunaka A, Fujitani Y. Role of zinc homeostasis in the pathogenesis of diabetes and obesity. Int J Mol Sci. 2018;19(2):476. doi: 10.3390/ijms19020476
  3. Normy fiziologicheskih potrebnostej v jenergii i pishhevyh veshhestvah dlja razlichnyh grupp naselenija Rossijskoj Federacii. Metodicheskie rekomendacii. Moskva: Federal’nyj centr gigieny i jepidemiologii Rospotrebnadzora, 2009. [cited: 2021 Feb 18]. Available from: https://www.rospotrebnadzor.ru/documents/details.php?ELEMENT_ID=4583. (In Russ.)
  4. Pregravidarnaja podgotovka. Klinicheskij protokol Mezhdisciplinarnoj associacii specialistov reproduktivnoj mediciny (MARS). Versija 2.0. Moscow: Redakcija zhurnala StatusPraesens; 2020. [cited: 2021 Feb 14]. Available from: https://praesens.ru/broshyury/protokol-mars-PP/. (In Russ.)
  5. Bermudez EA, Rifai N, Buring JE, et al. Relation between markers of systemic vascular inflammation and smoking in women. Am J Cardiol. 2002;89(9):1117–1119. doi: 10.1016/s0002-9149(02)02284-1
  6. Prezhdevremennye rody: klinicheskie rekomendacii (protokol lechenija). Pis’mo Minzdrava Rossii ot 17.12.2013 No. 15-4/10-2-9480. [cited: 2021 Feb 11]. Available from: http://zdrav.spb.ru/media/komzdrav/documents/document/file/prezhdevremennie_rodi.pdf. (In Russ.)
  7. Maxwell C, Gaudet L, Cassir G, et al. Guideline No. 391-Pregnancy and Maternal Obesity Part 1: Pre-conception and Prenatal Care. J Obstet Gynaecol Can. 2019;41(11):1623-1640. doi: 10.1016/j.jogc.2019.03.026
  8. Normal’naja beremennost’: Klinicheskie rekomendacii. Pis’mo Ministerstva zdravoohranenija RF ot 13 fevralya 2020 g. No. 15-4/368-07. [cited: 2021 Mar 1]. Available from: https://rd2rzn.ru/storage/web/source/1/duNLGGEtoKYZB6DAn85UjiOpGIUtSwWF.pdf (In Russ.)
  9. Figo Working Group On Best Practice In Maternal-Fetal Medicine; International Federation of Gynecology and Obstetrics. Best practice in maternal-fetal medicine. Int J Gynaecol Obstet. 2015;128(1):80–82. Corrected and republished from: Int J Gynaecol Obstet. 2015;129(1):89. doi: 10.1016/j.ijgo.2014.10.011
  10. World Health Organization [Internet]. Periconceptional folic acid supplementation to prevent neural tube defects. [cited: 2021 Mar 2]. Available from: https://www.who.int/elena/titles/folate_periconceptional/en/
  11. Sayyah-Melli M, Ghorbanihaghjo A, Alizadeh M, et al. The effect of high dose folic acid throughout pregnancy on homocysteine (hcy) concentration and pre-eclampsia: A randomized clinical trial. PLoS One. 2016;11(5):e0154400. doi: 10.1371/journal.pone.0154400
  12. Hovdenak N, Haram K. Influence of mineral and vitamin supplements on pregnancy outcome. Eur J Obstet Gynecol Reprod Biol. 2012;164(2):127–132. doi: 10.1016/j.ejogrb.2012.06.020
  13. Baranov II, Dorofejkov VV, Zazerskaja IE, i dr. Mezhdisciplinarnoe rukovodstvo po profilaktike i lecheniju deficita vitamina D v pregravidarnom periode, vo vremja beremennosti i posle rodov. Saint Petersburg: Jeko-Vektor; 2020. (In Russ.)
  14. Gernand AD, Schulze KJ, Stewart CP, et al. Micronutrient deficiencies in pregnancy worldwide: health effects and prevention. Nat Rev Endocrinol. 2016;12(5):274–289. doi: 10.1038/nrendo.2016.37
  15. Classen HG, Gröber U, Löw D, Schmidt J, Stracke H. Zink-mangel. Symptome, Ursachen, diagnose und therapie [Zinc deficiency. Symptoms, causes, diagnosis and therapy]. Med Monatsschr Pharm. 2011;34(3):87–95.
  16. Quinton AE, Cook CM, Peek MJ. The relationship between cigarette smoking, endothelial function and intrauterine growth restriction in human pregnancy. BJOG. 2008;115(6):780–784. doi: 10.1111/j.1471-0528.2008.01691.x
  17. Pizent A, Lazarus M, Kovačić J, et al. Cigarette smoking during pregnancy: Effects on antioxidant enzymes, metallothionein and trace elements in mother-newborn Pairs. Biomolecules. 2020;10(6):892. doi: 10.3390/biom10060892
  18. World Health Organization [Internet]. Guideline: Daily iron supplementation in adult women and adolescent girls. Geneva: WHO; 2016. [cited 2021 Feb 13]. Available from: https://apps.who.int/iris/bitstream/handle/10665/204761/9789241510196_eng.pdf?sequence=1/
  19. Peña-Rosas JP, De-Regil LM, Gomez Malave H, et al. Intermittent oral iron supplementation during pregnancy. Cochrane Database Syst Rev. 2015;2015(10):CD009997. doi: 10.1002/14651858.CD009997.pub2
  20. Tolkien Z, Stecher L, Mander AP, et al. Ferrous sulfate supplementation causes significant gastrointestinal side-effects in adults: a systematic review and meta-analysis. PLoS One. 2015;10(2):e0117383. doi: 10.1371/journal.pone.0117383
  21. Rayman MP. The importance of selenium to human health. Lancet. 2000;356(9225):233–241. doi: 10.1016/S0140-6736(00)02490-9
  22. Egeland GM, Skurtveit S, Sakshaug S, et al. Low calcium intake in midpregnancy is associated with hypertension development within 10 years after pregnancy: The Norwegian mother and child cohort study. J Nutr. 2017;147(9):1757–1763. doi: 10.3945/jn.117.251520
  23. Gipertenzivnye rasstrojstva vo vremja beremennosti, v rodah i poslerodovom periode. Prejeklampsija. Jeklampsija. Klinicheskij protokol. Pis’mo Minzdrava RF ot 07.06.2016 g. No. 15-4/10-2-3483. [cited: 2021 Feb 18]. Available from: https://rokb.ru/sites/default/files/pictures/gipertenzivnye_rasstroystva_vo_vremya_beremennosti_v_rodah_i_poslerodovom_periode._preeklampsiya._eklampsiya.pdf. (In Russ.)
  24. World Health Organization [Internet]. WHO recommendations on antenatal care for a positive pregnancy experience. Geneva: WHO; 2017. [cited: 2021 Feb 20]. Available from: https://apps.who.int/iris/bitstream/handle/10665/255150/9789244549919-rus.pdf?sequence=1
  25. Dutton H, Borengasser SJ, Gaudet LM, Barbour LA, Keely EJ. Obesity in pregnancy: Optimizing outcomes for mom and baby. Med Clin North Am. 2018;102(1):87–106. doi: 10.1016/j.mcna.2017.08.008
  26. World Health Organization [Internet]. Iodine supplementation in pregnant and lactating women. Geneva: World Health Organization; 2016. [cited: 2021 Feb 18]. Available from: https://www.who.int/elena/titles/iodine_pregnancy/en/
  27. Harding KB, Peña-Rosas JP, Webster AC, et al. Iodine supplementation for women during the preconception, pregnancy and postpartum period. Cochrane Database Syst Rev. 2017;3(3):CD011761. doi: 10.1002/14651858.CD011761.pub2
  28. GOST R 51574-2018 Sol’ pishhevaja. Obshhie tehnicheskie uslovija Specifications. Nacional’nyj standart Rossijskoj Federacii. Utverzhden i vveden v dejstvie Prikazom Federal’nogo agentstva po tehnicheskomu regulirovaniju i metrologii ot 18 maja 2018 g. No 263-st. Moscow: Standartinform; 2018.]. [cited: 2021 Feb 18]. Available from: http://docs.cntd.ru/document/1200159300. (In Russ.)
  29. Proekt Federal’nogo zakona “O profilaktike zabolevanij, vyzvannyh deficitom joda” (podgotovlen Minzdravom Rossii, ID proekta 02/04/03-19/00089946). [cited: 2021 Mar 1]. Available from: http://www.consultant.ru/cons/cgi/online.cgi?req=doc&base=PRJ&n=189142#05433398793606977. (In Russ.)
  30. Aghajafari F, Field CJ, Kaplan BJ, et al. The current recommended vitamin D intake guideline for diet and supplements during pregnancy is not adequate to achieve vitamin D sufficiency for most pregnant women. PLoS One. 2016;11(7):e0157262. doi: 10.1371/journal.pone.0157262
  31. Karonova TL, Grinyova EN, Nikitina IL, et al. The prevalence of vitamin D deficiency in the Northwestern region of the Russian Federation among the residents of St. Petersburg and Petrozavodsk. Оsteoporosis and osteopathy. 2013;(3):3–7. doi: 10.14341/osteo20133. (In Russ.)
  32. Lesnyak OM, Nikitinskaya OA, Toroptsova NV, et al. The prevention, diagnosis, and treatment of vitamin D and calcium deficiencies in the adult population of Russia and in patients with osteoporosis (according to the materials of prepared clinical recommendations). Scientific and practical rheumatology. 2015;53(4):403–408. doi: 10.14412/1995-4484-2015-403-408. (In Russ.)
  33. Dolk HM, Nau H, Hummler H, Barlow SM. Dietary vitamin A and teratogenic risk: European Teratology Society discussion paper. Eur J Obstet Gynecol Reprod Biol. 1999;83(1):31–36. doi: 10.1016/s0301-2115(98)00228-0
  34. Kambe T, Tsuji T, Hashimoto A, Itsumura N. The Physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism. Physiol Rev. 2015;95(3):749–784. doi: 10.1152/physrev.00035.2014
  35. Troche C, Aydemir TB, Cousins RJ. Zinc transporter Slc39a14 regulates inflammatory signaling associated with hypertrophic adiposity. Am J Physiol Endocrinol Metab. 2016;310(4):E258–E268. doi: 10.1152/ajpendo.00421.2015
  36. Bateman DN, Eagling V, Sandilands EA, et al. Iron overdose epidemiology, clinical features and iron concentration-effect relationships: the UK experience 2008-2017. Clin Toxicol (Phila). 2018;56(11):1098–1106. doi: 10.1080/15563650.2018.1455978
  37. Tran T, Wax JR, Philput C, Steinfeld JD, Ingardia CJ. Intentional iron overdose in pregnancy — management and outcome. J Emerg Med. 2000;18(2):225–228. doi: 10.1016/s0736-4679(99)00199-7
  38. Jin Y, Coad J, Weber JL, Thomson JS, Brough L. Selenium intake in iodine-deficient pregnant and breastfeeding women in New Zealand. Nutrients. 2019;11(1):69. doi: 10.3390/nu11010069
  39. Gladyshev VN, Arnér ES, Berry MJ, et al. Selenoprotein gene nomenclature. J Biol Chem. 2016;291(46):24036–24040. doi: 10.1074/jbc.M116.756155
  40. Ventura M, Melo M, Carrilho F. Selenium and thyroid disease: From pathophysiology to treatment. Int J Endocrinol. 2017;2017:1297658. doi: 10.1155/2017/1297658
  41. Wang N, Tan HY, Li S, Xu Y, Guo W, Feng Y. Supplementation of micronutrient selenium in metabolic diseases: Its role as an antioxidant. Oxid Med Cell Longev. 2017;2017:7478523. doi: 10.1155/2017/7478523

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure. Relationship between zinc deficiency and body mass index in pregnant women

Download (74KB)

Copyright (c) 2021 Eсо-Vector



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies