Options for generating polycystic ovary syndrome based on experimental findings in animal models

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Polycystic ovary syndrome (PCOS) is a common endocrine pathology that affects 8–14% of women of reproductive age. The leading signs of the disease are hyperandrogenism, ovulatory dysfunction, and polycystic ovarian morphology. Over the past decades, a variety of animal models have been developed to study the etiology and pathogenesis of PCOS, including chemical, hormonal, and genetic interventions. However, a large number of experimental techniques differ even in the framework of a single model. In this review article, we summarized PCOS animal models using both direct hormonal effects and indirect methods.

About the authors

Maria I. Yarmolinskaya

The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott; North-Western State Medical University named after I.I. Mechnikov

Email: m.yarmolinskaya@gmail.com
ORCID iD: 0000-0002-6551-4147
SPIN-code: 3686-3605
Scopus Author ID: 7801562649

MD, PhD, DSci (Medicine), Professor, Professor of the Russian Academy of Sciences, Head of the Department of Gynecology and Endocrinology, Head of the Diagnostics and Treatment of Endometriosis Center; Professor. The Department of Obstetrics and Gynecology

Russian Federation, Saint Petersburg

Elena I. Abashova

The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott

Email: abashova@yandex.ru
ORCID iD: 0000-0003-2399-3108
SPIN-code: 2133-0310

MD, PhD, Senior Researcher of the Department of Gynecology and Endocrinology, Head of the Ovulation Induction Center

Russian Federation, Saint Petersburg

Olga L. Bulgakova

The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott

Author for correspondence.
Email: o.bulgakova1310@gmail.com
ORCID iD: 0000-0002-1007-4543
ResearcherId: AAS-1434-2020

MD, Post-Graduate Student

Russian Federation, Saint Petersburg

References

  1. Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril. 2004;81(1):19-25. https://doi.org/10.1016/j.fertnstert.2003.10.004.
  2. Franks S, Stark J, Hardy K. Follicle dynamics and anovulation in polycystic ovary syndrome. 2008;14(5):539. Hum Reprod Update. 2008;14(4):367-378. https://doi.org/10.1093/humupd/dmn015.
  3. Goodarzi MO, Dumesic DA, Chazenbalk G, Azziz R. Polycystic ovary syndrome: Etiology, pathogenesis and diagnosis. Nat Rev Endocrinol. 2011;7(4):219-231. https://doi.org/10.1038/nrendo.2010.217.
  4. Abbott DH, Dumesic DA, Eisner JR, et al. Insights into the development of polycystic ovary syndrome (PCOS) from studies of prenatally androgenized female rhesus monkeys. Trends Endocrinol Metab. 1998;9(2):62-67. https://doi.org/10.1016/s1043-2760(98)00019-8.
  5. Wu XY, Li ZL, Wu CY, et al. Endocrine traits of polycystic ovary syndrome in prenatally androgenized female Sprague-Dawley rats. Endocr J. 2010;57(3):201-209. https://doi.org/10.1507/endocrj.k09e-205.
  6. Yan X, Dai X, Wang J, et al. Prenatal androgen excess programs metabolic derangements in pubertal female rats. J Endocrinol. 2013;217(1):119-129. https://doi.org/10.1530/JOE-12-0577.
  7. Caldwell AS, Middleton LJ, Jimenez M, et al. Characterization of reproductive, metabolic, and endocrine features of polycystic ovary syndrome in female hyperandrogenic mouse models. Endocrinology. 2014;155(8):3146-3159. https://doi.org/10.1210/en.2014-1196.
  8. Ota H, Fukushima M, Maki M. Endocrinological and histological aspects of the process of polycystic ovary formation in the rat treated with testosterone propionate. Tohoku J Exp Med. 1983;140(2):121-131. https://doi.org/10.1620/tjem.140.121.
  9. Tyndall V, Broyde M, Sharpe R, et al. Effect of androgen treatment during foetal and/or neonatal life on ovarian function in prepubertal and adult rats. Reproduction. 2012;143(1):21-33. https://doi.org/10.1530/REP-11-0239.
  10. Cruz G, Barra R, González D, et al. Temporal window in which exposure to estradiol permanently modifies ovarian function causing polycystic ovary morphology in rats. Fertil Steril. 2012;98(5):1283-1290. https://doi.org/10.1016/ j.fertnstert.2012.07.1060.
  11. Fernández M, Bourguignon N, Lux-Lantos V, Libertun C. Neonatal exposure to bisphenol A and reproductive and endocrine alterations resembling the polycystic ovarian syndrome in adult rats. Environ Health Perspect. 2010;118(9):1217-1222. https://doi.org/10.1289/ehp.0901257.
  12. Schulster A, Farookhi R, Brawer JR. Polycystic ovarian condition in estradiol valerate-treated rats: Spontaneous changes in characteristic endocrine features. Biol Reprod. 1984;31(3):587-593. https://doi.org/10.1095/biolreprod31.3.587.
  13. Brawer JR, Munoz M, Farookhi R. Development of the polycystic ovarian condition (PCO) in the estradiol valerate-treated rat. Biol Reprod. 1986;35(3):647-655. https://doi.org/10.1095/biolreprod35.3.647.
  14. Hemmings R, Farookhi R, Brawer JR. Pituitary and ovarian responses to luteinizing hormone releasing hormone in a rat with polycystic ovaries. Biol Reprod. 1983;29(1):239-248. https://doi.org/10.1095/biolreprod29.1.239.
  15. Quandt LM, Hutz RJ. Induction by estradiol-17 beta of polycystic ovaries in the guinea pig. Biol Reprod. 1993;48(5):1088-1094. https://doi.org/10.1095/biolreprod48.5.1088.
  16. Risma KA, Hirshfield AN, Nilson JH. Elevated luteinizing hormone in prepubertal transgenic mice causes hyperandrogenemia, precocious puberty, and substantial ovarian pathology. Endocrinology. 1997;138(8):3540-3547. https://doi.org/10.1210/endo.138.8.5313.
  17. Devin JK, Johnson JE, Eren M, et al. Transgenic overexpression of plasminogen activator inhibitor-1 promotes the development of polycystic ovarian changes in female mice. J Mol Endocrinol. 2007;39(1):9-16. https://doi.org/10.1677/JME-06-0057.
  18. Shi D, Dyck MK, Uwiera RR, et al. A unique rodent model of cardiometabolic risk associated with the metabolic syndrome and polycystic ovary syndrome. Endocrinology. 2009;150(9):4425-4436. https://doi.org/10.1210/en.2008-1612.
  19. Kafali H, Iriadam M, Ozardali I, Demir N. Letrozole-induced polycystic ovaries in the rat: A new model for cystic ovarian disease. Arch Med Res. 2004;35(2):103-108. https://doi.org/10.1016/j.arcmed.2003.10.005.
  20. Li C, Chen L, Zhao Y, et al. Altered expression of miRNAs in the uterus from a letrozole-induced rat PCOS model. Gene. 2017;598:20-26. https://doi.org/10.1016/j.gene.2016. 10.033.
  21. Bernuci MP, Szawka RE, Helena CV, et al. Locus coeruleus mediates cold stress-induced polycystic ovary in rats. Endocrinology. 2008;149(6):2907-2916. https://doi.org/10.1210/en.2007-1254.
  22. Baldissera SF, Motta LD, Almeida MC, Antunes-Rodrigues J. Proposal of an experimental model for the study of polycystic ovaries. Braz J Med Biol Res. 1991;24(7):747-751.
  23. Kang X, Jia L, Shen X. Manifestation of hyperandrogenism in the continuous light exposure-induced PCOS rat model. Biomed Res Int. 2015;2015:943694. https://doi.org/10.1155/2015/943694.
  24. Lagace DC, Nachtigal MW. Valproic acid fails to induce polycystic ovary syndrome in female rats. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27(4):587-594. https://doi.org/10.1016/S0278-5846(03)00045-9.
  25. Tata B, Mimouni NE, Barbotin AL, et al. Elevated prenatal anti-Müllerian hormone reprograms the fetus and induces polycystic ovary syndrome in adulthood. Nat Med. 2018;24(6):834-846. https://doi.org/10.1038/s41591-018-0035-5.
  26. Volk KM, Pogrebna VV, Roberts JA, et al. High-Fat, High-Sugar diet disrupts the preovulatory hormone surge and induces cystic ovaries in cycling female rats. J Endocr Soc. 2017;1(12):1488-1505. https://doi.org/10.1210/js. 2017-00305.
  27. Roberts JS, Perets RA, Sarfert KS, et al. High-fat high-sugar diet induces polycystic ovary syndrome in a rodent model. Biol Reprod. 2017;96(3):551-562. https://doi.org/10.1095/biolreprod.116.142786.
  28. Maliqueo M, Sun M, Johansson J, et al. Continuous administration of a P450 aromatase inhibitor induces polycystic ovary syndrome with a metabolic and endocrine phenotype in female rats at adult age. Endocrinology. 2013;154(1):434-445. https://doi.org/10.1210/en.2012-1693.
  29. Ansel L, Bolborea M, Bentsen AH, et al. Differential regulation of kiss1 expression by melatonin and gonadal hormones in male and female Syrian hamsters. J Biol Rhythms. 2010;25(2):81-91. https://doi.org/10.1177/0748 730410361918.
  30. Vanecek J. Inhibitory effect of melatonin on GnRH-induced LH release. Rev Reprod. 1999;4(2):67-72. https://doi.org/10.1530/ror.0.0040067.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Yarmolinskaya M.I., Abashova E.I., Bulgakova O.L.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies